China supplier Top Hospital Crono Alaris Resin Intravenous IV Syringe Blood Infusion Vacuum Pumps vacuum pump design

Product Description

Product Description



Product Parameters

Hot Selling IV Pump Medical Electric Top Volumetric Infusion Pump 

Fit IV tubes Can be used with any brand IV set after exactly calibration
Pump Type Peristaltic finger pump
Accuracy ± 2%
Delivery rate range 0.1ml/h~1500ml/h (0.1ml/h~99.9ml/h, 0.1ml/h step; >99.9ml/h, 1ml/h step)
Delivery time range 00h01min~99h59min (1 min step)
Volume limit range: 0.0-9999ml (1 ml step)
Total Volume Range 0.0-9999ml (1 ml step)
Purge Rate 600.0ml/h (Adjustable)
KVO Rate 0.1~5.0ml/h.     Programmable and adjustable
Occlusion pressure 24 levels, 30k Pa- 160k Pa
(Programmable and adjustable)
Alarms Rate Abnormal ,Anti-flow clamp is not closed, Door Open ,Air-in- Line ,Occlusion ,Bottle Empty ,Battery Empty ,No Battery ,Key Holding During Infusion/ Pause ,Infusion  Complete ,No Action ,Battery Low
Three levels of alarm volume LOW, MEDIUM or HIGH
Dose Mode Volume:0.1-999.9ml(0.1ml step)
DRUG MASS:0.1-999.9mg 0.1mg step)
DOSE:0.001-9999ug/kg/ min(0.001ug/kg/min step)
WEIGHT:0.1-300kg(0.1kg the least step)
Bolus function Bolus rate:1.0~1500ml/h,Bolus volume:1.0~100ml
Programmable and adjustable, Automatic/ Manual bolus available
Brightness 1~10 levels can be selected
History records 2000 events stored can be checked and downloaded



Company Profile







Our Advantages

1. High quality product. Our team has focused on R&D and production of infusion and syringe pumps for more than 15 years.The pumps are all passed CE certificate(TUV-SUD ) and ISO13485.

2. Professional service. Our team will recommend suitable products according to your requirement. Experienced engineers will provide free after-sales service and help you better use our pumps.

3. Quick response. Our sales will reply your inquires in detail within 24 hours.

4. Timely delivery. The strong supply capacity can guarantee it.

5. Three-years warranty for free.

6. OEM Accepted. Your logo can be printed on the products.




One-Stop Medical Equipment Supplier

1.What is your warranty for the products?
Two year for free.

2.What is your after-sales service?
We provide technical support through operating manual and video; Once you have questions, you can get our engineer’s prompt response by email, phone call, or training in factory. If it’s hardware problem, within the warrantyperiod, we will send you spare parts for free, or you send it back then we repair for you freely.

3.What is the delivery time?
We have shipping agent, we can deliver the products to you by express, air freight, sea. Below is some delivery time for your reference:Express:UPS,DHL,TNT,ect (door to door),7-10 days
Hand carry: Send to your hotel, your friends, your forwarder, your sea port or your warehouse in China. Air freigt(from airport to airport): 3-10 days
Sea(any sea port):Mombasa(30 days),Port Xihu (West Lake) Dis.g(12 days),Manila(10 days),Lagos (45 days), Guayaquil(45 days)

4.How to place the order? What is your lead time of the products?
40% of our products are in stock, 50% of the products need 3-10 days to produce, 10%of the products need 15-30 days to produce.

5.What is your payment term?
Our payment term is Telegraphic Transfer in advance, Western union, MoneyGram, Paypal, Trade Assurance, ect…

Classification: Physiological Functions of Diagnosis and Monitoring Equipment
Type: Infusion Pump
Certification: CE, MSDS, ISO13485
Group: All People
Product Name: Infusion Pump
Drug Library: up to 1030 Drugs Are Provided.


vacuum pump

What Is the Vacuum Level and How Is It Measured in Vacuum Pumps?

The vacuum level refers to the degree of pressure below atmospheric pressure in a vacuum system. It indicates the level of “emptiness” or the absence of gas molecules in the system. Here’s a detailed explanation of vacuum level measurement in vacuum pumps:

Vacuum level is typically measured using pressure units that represent the difference between the pressure in the vacuum system and atmospheric pressure. The most common unit of measurement for vacuum level is the Pascal (Pa), which is the SI unit. Other commonly used units include Torr, millibar (mbar), and inches of mercury (inHg).

Vacuum pumps are equipped with pressure sensors or gauges that measure the pressure within the vacuum system. These gauges are specifically designed to measure the low pressures encountered in vacuum applications. There are several types of pressure gauges used for measuring vacuum levels:

1. Pirani Gauge: Pirani gauges operate based on the thermal conductivity of gases. They consist of a heated element exposed to the vacuum environment. As gas molecules collide with the heated element, they transfer heat away, causing a change in temperature. By measuring the change in temperature, the pressure can be inferred, allowing the determination of the vacuum level.

2. Thermocouple Gauge: Thermocouple gauges utilize the thermal conductivity of gases similar to Pirani gauges. They consist of two dissimilar metal wires joined together, forming a thermocouple. As gas molecules collide with the thermocouple, they cause a temperature difference between the wires, generating a voltage. The voltage is proportional to the pressure and can be calibrated to provide a reading of the vacuum level.

3. Capacitance Manometer: Capacitance manometers measure pressure by detecting the change in capacitance between two electrodes caused by the deflection of a flexible diaphragm. As the pressure in the vacuum system changes, the diaphragm moves, altering the capacitance and providing a measurement of the vacuum level.

4. Ionization Gauge: Ionization gauges operate by ionizing gas molecules in the vacuum system and measuring the resulting electrical current. The ion current is proportional to the pressure, allowing the determination of the vacuum level. There are different types of ionization gauges, such as hot cathode, cold cathode, and Bayard-Alpert gauges.

5. Baratron Gauge: Baratron gauges utilize the principle of capacitance manometry but with a different design. They consist of a pressure-sensing diaphragm separated by a small gap from a reference electrode. The pressure difference between the vacuum system and the reference electrode causes the diaphragm to deflect, changing the capacitance and providing a measurement of the vacuum level.

It’s important to note that different types of vacuum pumps may have different pressure ranges and may require specific pressure gauges suitable for their operating conditions. Additionally, vacuum pumps are often equipped with multiple gauges to provide information about the pressure at different stages of the pumping process or in different parts of the system.

In summary, vacuum level refers to the pressure below atmospheric pressure in a vacuum system. It is measured using pressure gauges specifically designed for low-pressure environments. Common types of pressure gauges used in vacuum pumps include Pirani gauges, thermocouple gauges, capacitance manometers, ionization gauges, and Baratron gauges.

\vacuum pump

What Is the Role of Vacuum Pumps in Pharmaceutical Manufacturing?

Vacuum pumps play a crucial role in various aspects of pharmaceutical manufacturing. Here’s a detailed explanation:

Vacuum pumps are extensively used in pharmaceutical manufacturing processes to support a range of critical operations. Some of the key roles of vacuum pumps in pharmaceutical manufacturing include:

1. Drying and Evaporation: Vacuum pumps are employed in drying and evaporation processes within the pharmaceutical industry. They facilitate the removal of moisture or solvents from pharmaceutical products or intermediates. Vacuum drying chambers or evaporators utilize vacuum pumps to create low-pressure conditions, which lower the boiling points of liquids, allowing them to evaporate at lower temperatures. By applying vacuum, moisture or solvents can be efficiently removed from substances such as active pharmaceutical ingredients (APIs), granules, powders, or coatings, ensuring the desired product quality and stability.

2. Filtration and Filtrate Recovery: Vacuum pumps are used in filtration processes for the separation of solid-liquid mixtures. Vacuum filtration systems typically employ a filter medium, such as filter paper or membranes, to retain solids while allowing the liquid portion to pass through. By applying vacuum to the filtration apparatus, the liquid is drawn through the filter medium, leaving behind the solids. Vacuum pumps facilitate efficient filtration, speeding up the process and improving product quality. Additionally, vacuum pumps can aid in filtrate recovery by collecting and transferring the filtrate for further processing or reuse.

3. Distillation and Purification: Vacuum pumps are essential in distillation and purification processes within the pharmaceutical industry. Distillation involves the separation of liquid mixtures based on their different boiling points. By creating a vacuum environment, vacuum pumps lower the boiling points of the components, allowing them to vaporize and separate more easily. This enables efficient separation and purification of pharmaceutical compounds, including the removal of impurities or the isolation of specific components. Vacuum pumps are utilized in various distillation setups, such as rotary evaporators or thin film evaporators, to achieve precise control over the distillation conditions.

4. Freeze Drying (Lyophilization): Vacuum pumps are integral to the freeze drying process, also known as lyophilization. Lyophilization is a dehydration technique that involves the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. Vacuum pumps create a low-pressure environment in freeze drying chambers, allowing the frozen product to undergo sublimation. During sublimation, the frozen water or solvent directly transitions from the solid phase to the vapor phase, bypassing the liquid phase. Vacuum pumps facilitate efficient and controlled sublimation, leading to the production of stable, shelf-stable pharmaceutical products with extended shelf life.

5. Tablet and Capsule Manufacturing: Vacuum pumps are utilized in tablet and capsule manufacturing processes. They are involved in the creation of vacuum within tablet presses or capsule filling machines. By applying vacuum, the air is removed from the die cavity or capsule cavity, allowing for the precise filling of powders or granules. Vacuum pumps contribute to the production of uniform and well-formed tablets or capsules by ensuring accurate dosing and minimizing air entrapment, which can affect the final product quality.

6. Sterilization and Decontamination: Vacuum pumps are employed in sterilization and decontamination processes within the pharmaceutical industry. Autoclaves and sterilizers utilize vacuum pumps to create a vacuum environment before introducing steam or chemical sterilants. By removing air or gases from the chamber, vacuum pumps assist in achieving effective sterilization or decontamination by enhancing the penetration and distribution of sterilants. Vacuum pumps also aid in the removal of sterilants and residues after the sterilization process is complete.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, dry screw pumps, or liquid ring pumps, may be utilized in pharmaceutical manufacturing depending on the specific requirements of the process and the compatibility with pharmaceutical products.

In summary, vacuum pumps play a vital role in various stages of pharmaceutical manufacturing, including drying and evaporation, filtration and filtrate recovery, distillation and purification, freeze drying (lyophilization), tablet and capsule manufacturing, as well as sterilization and decontamination. By enabling efficient and controlled processes, vacuum pumps contribute to the production of high-quality pharmaceutical products, ensuring the desired characteristics, stability, and safety.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China supplier Top Hospital Crono Alaris Resin Intravenous IV Syringe Blood Infusion Vacuum Pumps   vacuum pump design		China supplier Top Hospital Crono Alaris Resin Intravenous IV Syringe Blood Infusion Vacuum Pumps   vacuum pump design
editor by CX 2023-12-09