Tag Archives: quality vacuum pump

China best CHINAMFG High Quality Auto Parts Vacuum Pump 03h145100c for VW Audi Skoda Atlas Cross Sport Cc EOS Magotan vacuum pump ac system

Product Description

                                          Product Information
Product name Vacuum Pump
OEM 03H1451,
Warranty 1 year
Certifications CE
Condition Brand-new
Appliction For VW AUDI Q7
Brand Name ZOOMKEY
Place of Origin ZheJiang , China
Quality High-performance

 

 

 

 

 

 

Related Products

 

Company Profile

Our advantages

One-stop solution for auto parts
ODM and OEM customized
with 12 months-24 months warranty
high quality, professional service

 

Zoomrich is a company specialized in distribution and service for CHINAMFG car parts,Especially in Volkswagen, Audi, Mercedes-Benz, BMW, Por sche,Jaguar,Land-Rover autoparts.Our business includes temperature control system,suspension parts, engine parts, electrical parts, and some other product lines.We are based in ZheJiang , and cooperate with many international first-line brands in order to meet the customer’s choice of diversity. Based on 12 years of experience,We accumulated a lot of factory resources and build a long-term cooperation in China which include OEM factory,OES resources,IAM factory verified by International famous brand.
 

About Us
CHINAMFG electronic commerce(ZheJiang )Co.Ltd.is specialized in serving the German car system. The products are suitable for Mercedes-Benz, BMW,Volkswagen imported and other luxury cars. It covers auto engine system, auto transmission system, auto covering system, auto temperature control system,auto suspension and steering system, auto electronic system and so on.
With years of experience in the market of China in auto parts field ,our products have been exported to all over the world simultaneously.We have integrate the R&D,manufacture and trade. Supportina ODM
&OEM customized,and strict support confidentiality of customer brands and property rights. We will try our best to cooperation with you to establish a CHINAMFG relationship.
 

AFQ

1. who are we?
We are based in ZheJiang , China, start from 2017,sell to Western Europe(20.00%),Domestic Market(20.00%),North America(10.00%),South America(10.00%),Eastern Europe(10.00%),Northern Europe(10.00%),Southeast Asia(5.00%),Africa(5.00%),Mid East(5.00%),Eastern Asia(5.00%). There are total about 11-50 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
camshaft adjuster,headlamp accessories,cylinder head cover,shock absorber,tensioner

4. why should you buy from us not from other suppliers?
One-stop solution for auto parts ODM and OEM customized with 12 months-24 months warranty

5. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW,Express Delivery;
Accepted Payment Currency:USD,EUR,CNY;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,PayPal,Western Union,Cash;
Language Spoken:English,Chinese

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Warranty: 1 Year
Product Name: Vacuum Pump
Package: Carton Box
Quality: High-Performance
Transport Package: Neutral
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

vacuum pump

What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?

Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:

Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.

Here are some key roles of vacuum pumps in semiconductor manufacturing:

1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.

2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.

3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.

4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.

5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.

6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.

7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.

8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.

Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.

Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China best CHINAMFG High Quality Auto Parts Vacuum Pump 03h145100c for VW Audi Skoda Atlas Cross Sport Cc EOS Magotan   vacuum pump ac system	China best CHINAMFG High Quality Auto Parts Vacuum Pump 03h145100c for VW Audi Skoda Atlas Cross Sport Cc EOS Magotan   vacuum pump ac system
editor by Dream 2024-04-19

China high quality Rotary Vane Vacuum Pumps, Roots Pumps And Dry Pumps vacuum pump electric

Product Description

DS Series Dry Screw Vacuum Pump 

Features

1.Exhaust Path Is Short, Reduce The Deposition Of Reactants.
Comparing with other types of dry vacuum pump,DENAIR screw vacuum pump has the shortest gas path in the vacuum pump and that could reduce the contamination of process gas. Screw rotors can play as a powder transmission mechanism,we runs well even there has lots of contamination inside the pump.

2.The Optimal Linear Sealing, The Pump Performance.
Patented rotor profile can provide rotor excellent sealing effects thus a larger clearance is allowable in between.Pump rotor wesring and rotor jam by the process contamination can be reduced by larger allowable clearcance.

3.Simple Structure, Low Fault Rate And Easy Maintenance
Screw type vacuum is composed by a pair of screw rotor and isolation plates are required in different between rotors and isolation plates can also be avoided.Overhaul CHINAMFG dry pump is much easier than other type of dry pump,so the erpair time is shorter and the cost is saver.

4.Microcomputer Operation, Remote Monitoring, Considerate Protection
Microprocessor controller provides lots of pump parameters for running status monitoring.Pump can be easily operated and monitored by the operation panel.Remote control software can help the customer monitor the pump running status remotely.

DS Vacuum Pump Speed Curve

Advantages

1.Special cooling liquid cooling, to avoid the cooling water may cause corrosion to the hull. 

2.Mobile operation interface, convenient operation; Display and the actual work of vacuum pump and can be selected to both languages, according to the real close to the customer.

3.Catch the power connector, safe and convenient.

4.The nitrogen gas heater, make the vacuum pump is more suitable for CVD, PECVD and other semiconductor technique process.
5.The control signals and communication signal interface, remote monitoring was carried out on the vacuum. 

Application

1.The health care industry.

2.Lighting industry.

3.A variety of analytical instruments.

4.Electronics, semiconductor industry. 

5.The power industry.

6.Refrigeration industry.

Technical Prameters

Type Unit DS180 DS250 DS360 DS540 DS720
50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz
Pumping speed m3/hr 180 216 250 3, China
And our factory is located in No.386,YangzhuangBang Street,Pingxing Rd.,Xindai Town,HangZhou,ZHangZhoug Province, China

Q3: Warranty terms of your machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Work Function: Pre-Suction Pump
Working Conditions: Dry
Customization:
Available

|

roots vacuum pump

How Do Roots Vacuum Pumps Affect the Efficiency of Vacuum Systems in Various Industries?

Roots vacuum pumps have a significant impact on the efficiency of vacuum systems across various industries. Here’s a detailed explanation:

1. Enhanced Vacuum Level:

– High Pumping Speed: Roots vacuum pumps are known for their high pumping speed, which refers to the rate at which they can evacuate gas from a system. By quickly removing gas molecules, these pumps help achieve and maintain a lower pressure, resulting in an enhanced vacuum level within the system. This increased vacuum level is crucial in industries such as semiconductor manufacturing, where precise control of pressure is necessary for optimal processing conditions.

– Improved Evacuation Time: With their rapid gas pumping capability, Roots vacuum pumps significantly reduce the evacuation time required to reach the desired vacuum level. This efficiency is particularly important in industries where time-sensitive processes are involved, such as vacuum drying, degassing, or impregnation, allowing for faster production cycles and increased productivity.

2. Increased Throughput:

– Continuous Operation: Roots vacuum pumps are designed for continuous operation, enabling uninterrupted gas removal from the vacuum system. Their robust construction and oil-free operation make them reliable and suitable for demanding industrial applications. The ability to maintain a consistent vacuum level without frequent stops or downtime contributes to increased system throughput and overall efficiency.

– Handling Large Volumes: Roots pumps are capable of handling large gas volumes due to their displacement principle. This makes them well-suited for industries that require the evacuation of substantial amounts of gas, such as in chemical processing, pharmaceutical manufacturing, or vacuum packaging. By efficiently evacuating large volumes of gas, Roots vacuum pumps facilitate higher production rates and improved process efficiency.

3. Improved Process Control:

– Stable Vacuum Level: Roots vacuum pumps help maintain a stable vacuum level within the system, which is essential for precise process control. By swiftly removing gas molecules, these pumps prevent pressure fluctuations and ensure a consistent environment for various manufacturing processes. This is particularly crucial in industries like thin film deposition, where maintaining a stable vacuum is crucial for achieving uniform coating thickness and quality.

– Reduced Contamination: Roots vacuum pumps operate without lubricating oil in the pumping chamber, minimizing the risk of oil contamination in the vacuum system. This is particularly advantageous in industries such as electronics, semiconductor fabrication, or research laboratories, where even trace amounts of contaminants can adversely affect product quality or experimental results. By providing clean and oil-free vacuum, Roots pumps contribute to improved process control, reduced yield loss, and enhanced product reliability.

4. Energy Efficiency:

– Lower Power Consumption: Roots vacuum pumps are designed to operate efficiently, consuming lower power compared to other types of vacuum pumps. This energy efficiency is beneficial in industries where vacuum systems are continuously operated, such as in chemical processing plants or industrial manufacturing facilities. By reducing power consumption, Roots pumps help lower operational costs and contribute to sustainable and environmentally friendly practices.

– Heat Dissipation: Roots pumps generate less heat during operation compared to certain other vacuum pump types. This is advantageous in industries where temperature control is critical, such as in semiconductor fabrication or vacuum furnaces. The reduced heat generation minimizes the need for additional cooling measures, improving overall energy efficiency and reducing operational costs.

In summary, Roots vacuum pumps significantly impact the efficiency of vacuum systems in various industries. They enhance the vacuum level, increase system throughput, improve process control, and contribute to energy savings. By providing high pumping speed, quick evacuation time, continuous operation, stable vacuum levels, reduced contamination risk, lower power consumption, and efficient heat dissipation, Roots vacuum pumps play a crucial role in optimizing the performance and productivity of vacuum systems across industries.

roots vacuum pump

What Are the Advantages of Using Roots Vacuum Pumps?

Roots vacuum pumps, also known as Roots blowers or rotary lobe pumps, offer several advantages that make them a popular choice for various industrial applications. Here’s a detailed explanation of the advantages of using Roots vacuum pumps:

1. High Pumping Speed: Roots vacuum pumps are known for their high pumping speed, which refers to the rate at which they can remove gas from a vacuum system. The unique design of synchronized rotating lobes enables these pumps to handle large volumes of gas efficiently. This high pumping speed makes Roots vacuum pumps well-suited for applications that require rapid evacuation or continuous extraction of gases.

2. Large Gas Handling Capacity: Roots vacuum pumps have a large gas handling capacity, allowing them to handle a wide range of gases, including clean air, corrosive gases, and vapors. Their robust construction and ability to handle gas with particulates or liquids make them suitable for applications in industries such as chemical processing, pharmaceuticals, food processing, and wastewater treatment.

3. Oil-Free and Contamination-Free Operation: One of the significant advantages of Roots vacuum pumps is that they operate without the need for lubrication. The non-contacting design of the pump eliminates the risk of oil contamination in the vacuum system. This is particularly important in applications where clean, oil-free vacuum environments are required, such as semiconductor manufacturing, electronics, and research laboratories.

4. Reliable and Low Maintenance: Roots vacuum pumps are known for their reliability and low maintenance requirements. Since there is no lubrication or contact between the lobes, there is minimal wear and tear, reducing the need for frequent maintenance or replacement of parts. This results in reduced downtime and lower operating costs for the users.

5. Noise and Vibration Reduction: Roots vacuum pumps are designed to operate with low noise and vibration levels. The precision engineering and balanced rotation of the lobes help minimize noise generation and vibration transmission. This makes Roots vacuum pumps suitable for applications where noise reduction and vibration control are important, such as in laboratories, medical facilities, and residential areas.

6. Wide Range of Vacuum Levels: While Roots vacuum pumps are not capable of achieving high vacuum levels on their own, they can be combined with other vacuum pumps, such as rotary vane pumps or diffusion pumps, to create hybrid or combination pumping systems. This allows them to cover a wide range of vacuum levels, making them versatile and adaptable to different application requirements.

7. Energy Efficiency: Roots vacuum pumps are designed to be energy-efficient, offering a favorable power-to-pumping speed ratio. Their efficient design and minimal internal losses help reduce energy consumption, resulting in lower operating costs for the users. This makes them an economical choice for continuous or high-throughput processes that require significant vacuum power.

8. Versatility and Compatibility: Roots vacuum pumps are compatible with various gases and can be used in a wide range of industrial applications. They find applications in industries such as chemical processing, pharmaceuticals, food processing, automotive, packaging, and environmental technology. Their versatility and compatibility make them suitable for both rough vacuum applications and as part of complex vacuum systems.

In summary, the advantages of using Roots vacuum pumps include high pumping speed, large gas handling capacity, oil-free and contamination-free operation, reliability, low maintenance requirements, noise and vibration reduction, a wide range of vacuum levels, energy efficiency, versatility, and compatibility. These advantages make Roots vacuum pumps a preferred choice for many industrial processes that require efficient and reliable vacuum generation.

China high quality Rotary Vane Vacuum Pumps, Roots Pumps And Dry Pumps   vacuum pump electricChina high quality Rotary Vane Vacuum Pumps, Roots Pumps And Dry Pumps   vacuum pump electric
editor by Dream 2024-04-19

China wholesaler Hep-02A Petrol Station Fuel Dispenser Vacuum Pump for Sale with high quality

Product Description

Product Description

1. Four E’s fuel pump is designed as a replacement for your worn-out fuel system part, will help optimize your vehicle’s performance and fuel efficiency.
2. Using an enhanced fourth-generation turbo pump as motor to provide proper power and fuel pressure, which will accelerate fuel atomizing and shorten engine start-up time
3. Adopting injection molding technology to strengthen plastic components of fuel pump assembly for improving the efficiency and stability of fuel delivery
4. This fuel pump assembly will meet even exceed OEM standards in fit, form and function, it’s engineered to offer simple, trouble-free installation
5. All fuel pumps are 1
 

Detailed Photos

Product application

– All 12 Volt Cars , Trucks , Boats & Generators

-for Toyota, Ford, Honda, Mazda, and any other suitable car

 

Our Advantages

1.Rich production experience and a strong Engineer Team to assist with product development design for manufacturability.

2.Independent design and development capabilities with automated equipment and high-precision molds.
Snapshot of Automated Production Line:

3.Dedicated customer service and technical support.We can ensure delivery within the agreed time and One Year Warranty.

4.100% new construction Full range of products.Not selling inventory products can guarantee the service life of products.
Snapshot of of some products

4.Customized services allowed.we can develop products with any samples or OE number.The cooperation process is as follows

Company Profile

Established in 2009, Four E’s Industrial Group is focused on providing after-market Auto Parts to customers worldwide. The company has a strong track record of offering performance Auto Parts to major North American Brands.

We offer OEM/ODM, private labeling services right from Product Development to Sourcing, Manufacturing, and Packaging. We have a robust Quality Assurance process in place and have ISO/IATF16949 certification for our Quality Management Systems.
Welcome to visit our factory!

 

Certifications

ISO 9001: 2015 / IATF16949 quality system certified. 

 

FAQ

1.What is your MOQ?

Our MOQ for each product is 500pcs

2.How long is our delivery?

Our delivery time is 45 days after the order is confirmed, we will discuss the delivery process step by step

3.What is your delivery method?

We have good cooperation with International Express such as FedEx, DHL, TNT, UPS etc., and also providing shipping by air
and sea. we will offer the best shipping method for your option.

You also can choose your own shipping agent, and we will contact with your shipping agent to arrange your shipment
accordingly

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 3 Years
Warranty: 1 Year
Car Make: Ford
Engine Type: Hep-02A
Car Model: Ford
Fuel: Diesel
Samples:
US$ 7.36/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Vacuum Pump

How to install a vacuum pump

A vacuum pump creates a relative vacuum within a sealed volume by drawing gas molecules from the sealed volume. Vacuum pumps can be used in a variety of industrial applications. They also offer various lubrication options. If you are considering purchasing, please understand its functions and features before purchasing.

How it works

The working principle of a vacuum pump is called gas transfer. The principle can be further divided into two basic categories: positive displacement and momentum transfer. At high pressure and moderate vacuum, gas molecules collide and move and create a viscous flow. At higher vacuum levels, gas molecules separate to create molecular or transitional flows.
Another principle of vacuum pumps is fluid-tightness. There are two main types of seals: rotary seals and screw seals. Rotary seals prevent liquid leakage, while screw seals only allow liquids to flow out at higher pressures. Some pumps may not use the third seal.
The flow rate of the vacuum pump determines the machine’s ability to pump a certain amount of material. A higher pumping speed will shorten the drain time. Therefore, the mass flow of the vacuum pump must be carefully considered. The speed and type of vacuum must also be considered.
The working principle of a vacuum pump is to push gas molecules from a high-pressure state to a low-pressure state. This creates a partial vacuum. There are many different types of vacuum pumps, each with different functions. Some are mechanical, some are chemical. In either case, their function is the same: to create a partial or complete vacuum. Vacuum pumps use a variety of technologies and are sized according to the application. Proper sizing is critical for optimum efficiency.
Gas transfer pumps use the same principles as vacuum pumps but use different technology. One of the earliest examples is the Archimedes spiral. Its structure consists of a single screw inside a hollow cylinder. More modern designs use double or triple screws. The rotation of the screw causes gas molecules to be trapped in the cavity between the screw and the housing. The fluid is then discharged at slightly above atmospheric pressure. This difference is called the compression ratio.
Another type of vacuum pump is a diffusion pump. Its main use is industrial vacuum processing. It is used in applications such as mass spectrometry, nanotechnology and analytical instrumentation. These pumps are generally inexpensive to purchase and operate.

Apply

Vacuum pumps are essential for many scientific and industrial processes. They are used in the production of vacuum tubes, CRTs, lamps and semiconductor processing. They can also be used to support mechanical equipment. For example, they can be mounted on the engine of a motor vehicle. Likewise, they can be used to power hydraulic components of aircraft. Among other uses, the vacuum pump helps calibrate the gyroscope.
Vacuum pumps are widely used in the pharmaceutical industry and are one of the largest users of this technology. They help deal with hazardous materials and eliminate waste quickly. They are also used in power jets, dump fuel tanks and rear doors, among others. However, they are sensitive to contamination and should only be used in environments where leaks can be prevented. Therefore, choosing the right fluid for the application is very important.
The most popular type of vacuum pump is the rotary vane pump. These pumps are known for their high pumping speed and low pressure. Their efficient pumping capacity allows them to reach pressures below 10-6 bar. Additionally, they are usually oil-sealed and have excellent vacuuming capabilities.
Vacuum pumps are often used to remove air from closed systems. They create a vacuum by reducing the density of the air in the compressed space. This is done by using the mechanical force energy generated by the rotating shaft. When the pump is under pressure, it converts this energy into pneumatic power. When the pressure is different, the energy produced depends on the volume of the gas and the pressure difference between the inner and outer atmospheres.
Vacuum pumps are also used in the manufacture of solar cells. They are used in the manufacture of solar cells, including ingot casting processes as well as cell and module processes. The design of the vacuum system plays an important role in reducing the cost of the process, thus making it profitable. Due to their low maintenance costs, they are an invaluable tool for making solar cells.
Vacuum pumps are widely used in many applications. In addition to industrial and research uses, they are also used in water remediation.
Vacuum Pump

Oil Lubrication Option

Vacuum pumps are available in a variety of oil lubrication options. Choosing the right lubricant can help protect your vacuum pump and maximize its performance. Different base oils may contain different additives, such as antioxidants, and some contain additional additives for specific purposes. You should choose an oil with the right concentration of these additives for optimal lubrication of your vacuum pump.
Vacuum pumps are usually lubricated with paraffinic mineral oil. However, this type of lubricant evaporates as the temperature increases. To minimize evaporative losses, choose a lubricant with low vapor pressure. Also, you should choose lubricants that are resistant to extreme temperatures. Extreme temperatures can put extra stress on the oil and can even significantly shorten the life of the oil.
In terms of viscosity, synthetic oils are the best choice for vacuum pumps. These types of oils are designed to resist gas dissolution and are more resistant to corrosion. Therefore, synthetic oils are ideal for handling aggressive substances. Whether or not your pump needs lubrication, choosing a quality product is important.
The vacuum pump oil should be changed periodically according to the manufacturer’s recommendations. If you use a filter, you should also change the oil as soon as the filter reaches the end of its life. Unplanned oil changes will eventually cause the vacuum pump to not reach its maximum vacuum capacity.
You can buy vacuum pump oil from vacuum pump manufacturers or other suppliers. These options are available in a variety of sizes, and labels can be customized. The oil should be designed for the pump. However, you should check the manufacturer’s recommendations to avoid buying the wrong type.
If you choose to use a synthetic oil, it is important to use a good quality oil. It helps the pump work more efficiently and prolong its life.
Vacuum Pump

Install

After choosing a suitable location, the next step is to install the pump. First, place the pump on a flat surface. Then, screw the pump onto the motor body above the check valve. Make sure the accessories are wrapped with sealing tape and secured with screws. The direction of gas inflow and outflow is indicated by arrows on the pump. The direction of rotation around the pump is also shown.
During commissioning, check the operation of each part of the pump. If the pump is equipped with a pipe connection, the pipe should be the same size and shape as the pump flange. Also, make sure that the piping does not cause any pressure drop. In addition, the first three weeks of operation require the installation of protective nets at the suction ports.
When selecting a pump, consider the back pressure of the system. Too much back pressure will affect the capacity of the vacuum pump. Also, check the temperature of the seal. If the temperature is too high, the seal may be damaged. It could also be due to a partially closed valve in the recirculation line or a clogged filter. Circulation pumps and heat exchangers should also be checked for fouling.
The vacuum pump is usually installed in the chassis area of ​​the car. They can be mounted next to the engine or on a lower support frame. They are usually fastened to the bracket using suitable shock absorbers and isolating elements. However, before installing the vacuum pump, be sure to check the vacuum pump’s wiring harness before connecting it to the vehicle.
In many experimental setups, a vacuum pump is essential. However, improperly installed vacuum pumps can expose users to harmful vapors and chemicals. Appropriate plugs and belt guards should be installed to prevent any accidental chemical exposure. It is also important to install a fume hood for the pump.
In most cases, vacuum pumps come with installation manuals and instructions. Some manufacturers even offer start-up assistance if needed.

China wholesaler Hep-02A Petrol Station Fuel Dispenser Vacuum Pump for Sale   with high quality China wholesaler Hep-02A Petrol Station Fuel Dispenser Vacuum Pump for Sale   with high quality
editor by Dream 2024-04-17

China OEM High Quality Vacuum Pump for Audi Seat VW 03G145209 03G145209d 03G145209c F009d02804 70255103 vacuum pump booster

Product Description

HangZhou Bee Automobile Parts Co., Ltd. is located in HangZhou China which is specialized in the export of Vehicle Parts, we have our own brand named B.E.E.Our products cover European, American, Australian, Japanese and so on, enjoy a good reputation among clients. We use the TS16949:2002 and international quality standard.Our parts are supplied to customers after being manufactured at our own production facilities or by trusted production partners. We supply quality, inexpensive, OE replacement parts for steering and suspension components, body, brake assemblies, cooling systems, engine, electrical sensor systems, fuel system, hydraulic system and other auto parts categorie.

Product Description

Size

Same as OE

Warranty

1 Years

Place of Origin

China

Brand Name

BEE

Certification

CE

Type

Ignition Distributor

About Us

Why Chose Us

Certifications

FAQ

Q1. What is the advantage about your company?
A1. Our company has professional team and professional production line.
 

Q2. Whyshould I choose your products?

A2. Our products are high quality and low price.

Q3. The logo and the color can be customized?

A3.Yes, we welcome you to sample custom.
 

Q4. Any other good service your company can provide?

A4. Yes,we can provide good after-saleand fast delivery.

 

Packing & Delivery

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 1 Years
Condition: 100%New
Car Make: for Audi Seat VW
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Vacuum Pump

Basic knowledge of vacuum pump

A vacuum pump is a device that draws gas molecules from a sealed volume and maintains a partial vacuum. Its main job is to create a relative vacuum within a given volume or volumes. There are many types of vacuum pumps. This article will describe how they work, their types, and their applications.

How it works

A vacuum pump is a mechanical device that removes gas from a system by applying it to a higher pressure than the surrounding atmosphere. The working principle of the vacuum pump is based on the principle of gas transfer and entrapment. Vacuum pumps can be classified according to their vacuum level and the number of molecules that can be removed per cubic centimeter of space. In medium to high vacuum, viscous flow occurs when gas molecules collide with each other. Increasing the vacuum causes molecular or transitional flow.
A vacuum pump has several components that make it a versatile tool. One of the main components is the motor, which consists of a rotor and a stator. The rotor and stator contain coils that generate a magnetic field when excited. Both parts must be mounted on a base that supports the weight of the pump. There is also an oil drain that circulates oil throughout the system for lubrication and cooling purposes.
Another type of vacuum pump is the liquid ring vacuum pump. It works by positioning the impeller above or below the blades. Liquid ring pumps can also adjust the speed of the impeller. However, if you plan to use this type of pump, it is advisable to consult a specialist.
Vacuum pumps work by moving gas molecules to areas of higher or lower pressure. As the pressure decreases, the removal of the molecules becomes more difficult. Industrial vacuum systems require pumps capable of operating in the 1 to 10-6 Torr range.

Type

There are different types of vacuum pumps. They are used in many different applications, such as laboratories. The main purpose of these pumps is to remove air or gas molecules from the vacuum chamber. Different types of pumps use different techniques to achieve this. Some types of pumps use positive displacement, while others use liquid ring, molecular transfer, and entrapment techniques.
Some of these pumps are used in industrial processes, including making vacuum tubes, CRTs, electric lights, and semiconductor processing. They are also used in motor vehicles to power hydraulic components and aircraft. The gyroscope is usually controlled by these pumps. In some cases, they are also used in medical settings.
How a vacuum pump works depends on the type of gas being pumped. There are three main types: positive displacement, negative displacement, and momentum transfer. Depending on the type of lubrication, these principles can be further divided into different types of pumps. For example, dry vacuum pumps are less sensitive to gases and vapors.
Another type of vacuum pump is called a rotary vane pump. This type of pump has two main components, the rotor and the vacuum chamber. These pumps work by rotating moving parts against the pump casing. The mating surfaces of rotary pumps are designed with very small clearances to prevent fluid leakage to the low pressure side. They are suitable for vacuum applications requiring low pulsation and high continuous flow. However, they are not suitable for use with grinding media.
There are many types of vacuum pumps and it is important to choose the right one for your application. The type of pump depends on the needs and purpose of the system. The larger ones can work continuously, and the smaller ones are more suitable for intermittent use.
Vacuum Pump

Apply

Vacuum pumps are used in a variety of industrial and scientific processes. For example, they are used in the production of vacuum tubes, CRTs, and electric lamps. They are also used in semiconductor processing. Vacuum pumps are also used as mechanical supports for other equipment. For example, there may be multiple vacuum pumps on the engine of a motor vehicle that powers the hydraulic components of an aircraft. In addition, they are often used in fusion research.
The most common type of vacuum pump used in the laboratory is the rotary vane pump. It works by directing airflow through a series of rotating blades in a circular housing. As the blades pass through the casing, they remove gas from the cavity and create a vacuum. Rotary pumps are usually single or double-stage and can handle pressures between 10 and 6 bar. It also has a high pumping speed.
Vacuum pumps are also used to fabricate solar cells on wafers. This involves a range of processes including doping, diffusion, dry etching, plasma-enhanced chemical vapor deposition, and bulk powder generation. These applications depend on the type of vacuum pump used in the process, and the vacuum pump chosen should be designed for the environment.
While there are several types of vacuum pumps available, their basic working principles remain the same. Each has different functions and capacities, depending on the type of vacuum. Generally divided into positive displacement pump, rotary vane pump, liquid ring pump, and molecular delivery pump.

Maintenance

The party responsible for general maintenance and repairs is the Principal Investigator (PI). Agknxs must be followed and approved by the PI and other relevant laboratory personnel. The Agknx provides guidelines for routine maintenance of vacuum pump equipment. Agknxs are not intended to replace detailed routine inspections of vacuum pump equipment, which should be performed by certified/qualified service personnel. If the device fails, the user should contact PI or RP for assistance.
First, check the vacuum pump for any loose parts. Make sure the inlet and outlet pressure gauges are open. When the proper pressure is shown, open the gate valve. Also, check the vacuum pump head and flow. Flow and head should be within the range indicated on the label. Bearing temperature should be within 35°F and maximum temperature should not exceed 80°F. The vacuum pump bushing should be replaced when it is severely worn.
If the vacuum pump has experienced several abnormal operating conditions, a performance test should be performed. Results should be compared to reference values ​​to identify abnormalities. To avoid premature pump failure, a systematic approach to predictive maintenance is essential. This is a relatively new area in the semiconductor industry, but leading semiconductor companies and major vacuum pump suppliers have yet to develop a consistent approach.
A simplified pump-down test method is proposed to evaluate the performance of vacuum pumps. The method includes simulated aeration field tests and four pump performance indicators. Performance metrics are evaluated under gas-loaded, idle, and gas-load-dependent test conditions.
Vacuum Pump

Cost

The total cost of a vacuum pump consists of two main components: the initial investment and ongoing maintenance costs. The latter is the most expensive component, as it consumes about four to five times the initial investment. Therefore, choosing a more energy-efficient model is a good way to reduce the total system cost and payback period.
The initial cost of a vacuum pump is about $786. Oil-lubricated rotary vane pumps are the cheapest, while oil-free rotary vane pumps are slightly more expensive. Non-contact pumps also cost slightly more. The cost of a vacuum pump is not high, but it is a factor that needs careful consideration.
When choosing a vacuum pump, it is important to consider the type of gas being pumped. Some pumps are only suitable for pumping air, while others are designed to pump helium. Oil-free air has a different pumping rate profile than air. Therefore, you need to consider the characteristics of the medium to ensure that the pump meets your requirements. The cost of a vacuum pump can be much higher than the purchase price, as the daily running and maintenance costs can be much higher.
Lubricated vacuum pumps tend to be more durable and less expensive, but they may require more maintenance. Maintenance costs will depend on the type of gas that needs to be pumped. Lighter gases need to be pumped slowly, while heavier gases need to be pumped faster. The maintenance level of a vacuum pump also depends on how often it needs to be lubricated.
Diaphragm vacuum pumps require regular maintenance and oil changes. The oil in the diaphragm pump should be changed every 3000 hours of use. The pump is also resistant to chemicals and corrosion. Therefore, it can be used in acidic and viscous products.

China OEM High Quality Vacuum Pump for Audi Seat VW 03G145209 03G145209d 03G145209c F009d02804 70255103   vacuum pump booster	China OEM High Quality Vacuum Pump for Audi Seat VW 03G145209 03G145209d 03G145209c F009d02804 70255103   vacuum pump booster
editor by CX 2024-04-17

China high quality Industrial 16 m3/h Dry Roots Vacuum Pump for Healthcare supplier

Product Description

DS Series Dry Screw Vacuum Pump 

Features

1.Exhaust Path Is Short, Reduce The Deposition Of Reactants.
Comparing with other types of dry vacuum pump,DENAIR screw vacuum pump has the shortest gas path in the vacuum pump and that could reduce the contamination of process gas. Screw rotors can play as a powder transmission mechanism,we runs well even there has lots of contamination inside the pump.

2.The Optimal Linear Sealing, The Pump Performance.
Patented rotor profile can provide rotor excellent sealing effects thus a larger clearance is allowable in between.Pump rotor wesring and rotor jam by the process contamination can be reduced by larger allowable clearcance.

3.Simple Structure, Low Fault Rate And Easy Maintenance
Screw type vacuum is composed by a pair of screw rotor and isolation plates are required in different between rotors and isolation plates can also be avoided.Overhaul CHINAMFG dry pump is much easier than other type of dry pump,so the erpair time is shorter and the cost is saver.

4.Microcomputer Operation, Remote Monitoring, Considerate Protection
Microprocessor controller provides lots of pump parameters for running status monitoring.Pump can be easily operated and monitored by the operation panel.Remote control software can help the customer monitor the pump running status remotely.

DS Vacuum Pump Speed Curve

Advantages

1.Special cooling liquid cooling, to avoid the cooling water may cause corrosion to the hull. 

2.Mobile operation interface, convenient operation; Display and the actual work of vacuum pump and can be selected to both languages, according to the real close to the customer.

3.Catch the power connector, safe and convenient.

4.The nitrogen gas heater, make the vacuum pump is more suitable for CVD, PECVD and other semiconductor technique process.
5.The control signals and communication signal interface, remote monitoring was carried out on the vacuum. 

Application

1.The health care industry.

2.Lighting industry.

3.A variety of analytical instruments.

4.Electronics, semiconductor industry. 

5.The power industry.

6.Refrigeration industry.

Technical Prameters

Type Unit DS180 DS250 DS360 DS540 DS720
50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz
Pumping speed m3/hr 180 216 250 3, China
And our factory is located in No.386,YangzhuangBang Street,Pingxing Rd.,Xindai Town,HangZhou,ZHangZhoug Province, China

Q3: Warranty terms of your machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Work Function: Pre-Suction Pump
Working Conditions: Dry
Customization:
Available

|

roots vacuum pump

Can Roots Vacuum Pumps Be Used for Environmental Testing in Chambers?

Yes, Roots vacuum pumps can be used for environmental testing in chambers. Here’s a detailed explanation:

1. Environmental Testing in Chambers: Environmental testing involves subjecting a product or component to various simulated environmental conditions to assess its performance, durability, and reliability. Chambers are commonly used for environmental testing and can simulate conditions such as temperature, humidity, pressure, and gas composition. These chambers create controlled environments that mimic real-world operating conditions to evaluate how a product or component responds under different environmental stressors.

2. Role of Vacuum Pumps: Vacuum pumps play a crucial role in environmental testing chambers by creating and maintaining the desired vacuum conditions. They help establish specific pressure levels, remove unwanted gases or contaminants, and enable controlled gas flow within the chamber. Vacuum pumps are responsible for evacuating the chamber, achieving the desired pressure or vacuum level, and ensuring the accuracy and reliability of the environmental test results.

3. Advantages of Roots Vacuum Pumps: Roots vacuum pumps offer several advantages that make them suitable for environmental testing in chambers:

– High Pumping Speed: Roots pumps have a high pumping speed, allowing them to quickly evacuate the chamber and achieve the desired vacuum level. This is particularly important when rapid cycling between different test conditions is required.

– Large Volume Handling: Chambers used in environmental testing can vary in size, from small-scale chambers to large walk-in chambers. Roots vacuum pumps are capable of handling large volumes of gas, making them suitable for evacuating chambers of different sizes efficiently.

– Continuous Operation: Roots vacuum pumps can operate continuously, ensuring the chamber remains at the desired vacuum level throughout the testing process. This is essential for maintaining test accuracy and consistency.

– Compatibility with Hybrid Pumping Systems: Roots vacuum pumps can be integrated into hybrid pumping systems, working alongside other pump technologies such as rotary vane pumps, scroll pumps, or turbomolecular pumps. This combination allows for enhanced pumping capability, achieving the desired vacuum levels and accommodating specific test requirements.

4. Considerations for Environmental Testing: While Roots vacuum pumps are suitable for environmental testing, several considerations should be taken into account:

– Gas Composition: Different environmental tests may involve specific gas compositions or mixtures. It is important to ensure that the selected Roots pump is compatible with the gases used in the testing process. Some gases may require special pump features or materials to avoid contamination or damage to the pump.

– Pressure Range: Environmental testing chambers may require a wide range of pressure levels to simulate various conditions. Roots vacuum pumps have limitations in terms of the ultimate vacuum level they can achieve. It is necessary to ensure that the selected pump can meet the pressure range requirements of the specific environmental tests.

– System Design: Proper system design is crucial to ensure efficient and reliable operation of the environmental testing chamber. Factors such as the chamber size, gas flow rates, evacuation times, and pressure control mechanisms should be considered when selecting and integrating Roots vacuum pumps into the testing system.

In summary, Roots vacuum pumps can be effectively used for environmental testing in chambers. Their high pumping speed, large volume handling capability, continuous operation, and compatibility with hybrid pumping systems make them suitable for maintaining the desired vacuum conditions during environmental tests. By considering factors such as gas composition, pressure range, and system design, Roots vacuum pumps contribute to the accurate and reliable assessment of product performance under simulated environmental conditions.

roots vacuum pump

Are Roots Vacuum Pumps Used in Industrial Applications?

Yes, Roots vacuum pumps are widely used in various industrial applications. Here’s a detailed explanation of their application in industrial settings:

1. Chemical Processing: Roots vacuum pumps find extensive use in the chemical processing industry. They are employed for processes such as vacuum distillation, solvent recovery, drying, and degassing. Their high pumping speed and ability to handle corrosive gases make them suitable for handling various chemical vapors and byproducts.

2. Pharmaceuticals: In the pharmaceutical industry, Roots vacuum pumps are utilized for applications such as vacuum drying, tablet coating, freeze drying, and vacuum packaging. Their oil-free operation ensures a clean and contaminant-free vacuum environment, which is crucial for pharmaceutical manufacturing processes.

3. Food Processing: Roots vacuum pumps play a significant role in the food processing industry. They are employed for vacuum packaging, vacuum cooling, and vacuum drying of food products. The oil-free operation of Roots vacuum pumps ensures food safety and eliminates the risk of contamination.

4. Environmental Technology: Roots vacuum pumps are utilized in environmental technology applications, including wastewater treatment, biogas processing, and air pollution control. They are employed to extract gases, control emissions, and facilitate the treatment and purification of air and water.

5. Semiconductor Manufacturing: In the semiconductor industry, Roots vacuum pumps are used for processes such as ion implantation, physical vapor deposition (PVD), chemical vapor deposition (CVD), and etching. Their high pumping speed and oil-free operation are crucial for maintaining clean vacuum conditions required in semiconductor fabrication.

6. Packaging and Printing: Roots vacuum pumps are employed in packaging and printing applications. They are used for vacuum packaging of products, vacuum forming of packaging materials, and in printing presses for paper handling and ink transfer.

7. Automotive Industry: Roots vacuum pumps find application in the automotive industry for processes such as brake system vacuum assist, crankcase ventilation, and emissions control systems. They help create vacuum conditions required for the operation of various automotive systems.

8. Research and Laboratory: Roots vacuum pumps are utilized in research laboratories and scientific facilities for a wide range of applications. They are used in vacuum ovens, freeze dryers, vacuum filtration, electron microscopy, surface analysis, and other laboratory processes that require controlled vacuum environments.

9. Energy Industry: In the energy sector, Roots vacuum pumps are used for applications such as steam turbine condenser air extraction, transformer drying, and vacuum impregnation of electrical components. They help maintain proper vacuum conditions for efficient and reliable operation of energy systems.

These are just a few examples of the industrial applications where Roots vacuum pumps are commonly used. Their high pumping speed, large gas handling capacity, oil-free operation, reliability, and versatility make them suitable for a wide range of industrial processes that require efficient and reliable vacuum generation.

China high quality Industrial 16 m3/h Dry Roots Vacuum Pump for Healthcare   supplier China high quality Industrial 16 m3/h Dry Roots Vacuum Pump for Healthcare   supplier
editor by CX 2024-04-17

China OEM High Quality Vrd Series Dual Stage Rotary Vane Vacuum Pump vacuum pump ac system

Product Description

Product Parameters

Model VRD-4 VRD-8 VRD-16 VRD-24 VRD-30 VRD-48 VRD-65 VRD-90
Pumping Speed 50HZ m3/h(L/S) 4(1.1) 8(2.2) 16(4.4) 24(6.6) 30(8.3) 48(13.3) 65(18) 85(23.6)
60HZ m3/h(L/S) 4.8(1.3 9.6(2.6) 19.2(5.2) 28.8(7.9) 36(9.9) 57.6(16) 78(21.6) 102(28.3)
Ultimate Partial Pressure Gas Ballast Close(Pa) 5×10-2 5×10-2 4×10-2 4×10-2 4×10-2 4×10-2 4×10-2 4×10-2
Ultimate Total Pressure Gas Ballast Close(Pa) 5×10-1 5×10-1 4×10-1 4×10-1 4×10-1 4×10-1 4×10-1 4×10-1
Ultimate Total Pressure Gas Ballast Open(Pa) 10 10 8×10-1 8×10-1 8×10-1 1.5 1.5 1.5
Power Supply Single/3 phase 3 phase
Power(kw) 0.4/0.37 0.4/0.37 0.55 0.75 1.1 1.5 2.2 3
Level of Protection IP44 IP44 IP44 IP44 IP44 IP44 IP44 IP44
Air Intake/Exhaust Port KF16/25 KF16/25 KF25 KF25/40 KF25/40 KF40 KF40 KF40
Oil Mass(L) 0.6-1.0 0.6-1.0 0.9-1.5 1.3-2.0 1.3-2.0 3.3-4.5 3.3-4.5 3.3-4.5
Motor Speed 50/60Hz(rpm) 1440/1720 1440/1720 1440/1720 1440/1720 1440/1720 1440/1720 1440/1720 1440/1720
Ambient Temperature(ºC) 10-40 10-40 10-40 10-40 10-40 10-40 10-40 10-40
Noise Level(dB) ≤52 ≤52 ≤58 ≤58 ≤58 ≤62 ≤62 ≤65
Weight(kg) 19 21 30 35 43 62 65 65
Size(L*W*H mm) 440*144*217 440*144*217 530*188*272 567*188*272 567*188*272 730*234*358 730*234*358 730*234*358

Product Description

“BOTH” VRD series pumps are designed for reliable long time continuous operation, they will take your equipment’s vacuum down to 0.3 CHINAMFG in minutes. Comes standard with all necessary fittings and a high capacity exhaust oil mist filter which also returns trapped pump oil back to the pump and makes the pump quieter to run. Multi-level gas ballast is designed to allow purposefully pull a less deep and slower vacuum by opening the gas ballast, allowing dry air to go directly into the pump and diluting the vacuum pull, and it also helps keep moisture, solvent, and other contaminants from getting stuck in the pump, and instead passing through to the exhaust. It is important to note that pumps should always be ran in a well ventilated area

· Tow-Shift adjustable gas ballast valve satisfies different requirements of condensable vapor(such as water vapor) to be exhausted
· Out of pump in different processes. Dual protection of oil anti-sucking back ensures vacuum system from oil pollution when pump
· Stops running and needs to be easily restarted. Forced oil circulation system consisted of oil pump and constant pressure oil supply mechanism ensures stable running of the pump.
· Less components are used, easy to maintain and repair

Application
· Rotary Vane Vacuum Pump corollary use with freezer dryer to reach vacuum state, it’s an essential corollary equipment in medicine CHINAMFG drying, biology, food industry and agricultural products deep processing
· Rotary Vane Vacuum Pump corollary use with vacuum drying oven for maintaining vacuum state inside the oven, they mainly applies in powder drying and baking in vacuum condition

Company Profile

Packaging & Shipping

FAQ

Q1. What is your products range?
• Industry water chiller, recirculating cooling chiller, rotary evaporator, alcohol recovery equipment, short path distillation kit, glass molecular distillation equipment, falling film evaporator, jacketed glass reactor and other lab equipment.

Q2. Are you trading company or manufacturer?
• We are professional manufacture of lab equipment and we have our own factory.

Q3. Do you provide samples? Is it free?

• Yes, we could offer the sample. Considering the high value of our products, the sample is not free, but we will give you our best price including shipping cost.

Q4. Do you have warranty?
• Yes, we offer 1 year warranty for the spare part.

Q5. How long is your delivery time?
• Generally it is within 7 working days after receiving the payment if the goods are in stock. Or it is 15 working days if thegoods are not in stock, depending on order quantity.

Q6. What is your terms of payment?
• Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Alibaba. you will get 100% payment refund if we can’t meet agreed delivery time.)

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 1 Year
Oil or Not: Oil
Structure: Multistage Pump
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

What Is the Impact of Altitude on Vacuum Pump Performance?

The performance of vacuum pumps can be influenced by the altitude at which they are operated. Here’s a detailed explanation:

Altitude refers to the elevation or height above sea level. As the altitude increases, the atmospheric pressure decreases. This decrease in atmospheric pressure can have several effects on the performance of vacuum pumps:

1. Reduced Suction Capacity: Vacuum pumps rely on the pressure differential between the suction side and the discharge side to create a vacuum. At higher altitudes, where the atmospheric pressure is lower, the pressure differential available for the pump to work against is reduced. This can result in a decrease in the suction capacity of the vacuum pump, meaning it may not be able to achieve the same level of vacuum as it would at lower altitudes.

2. Lower Ultimate Vacuum Level: The ultimate vacuum level, which represents the lowest pressure that a vacuum pump can achieve, is also affected by altitude. As the atmospheric pressure decreases with increasing altitude, the ultimate vacuum level that can be attained by a vacuum pump is limited. The pump may struggle to reach the same level of vacuum as it would at sea level or lower altitudes.

3. Pumping Speed: Pumping speed is a measure of how quickly a vacuum pump can remove gases from a system. At higher altitudes, the reduced atmospheric pressure can lead to a decrease in pumping speed. This means that the vacuum pump may take longer to evacuate a chamber or system to the desired vacuum level.

4. Increased Power Consumption: To compensate for the decreased pressure differential and achieve the desired vacuum level, a vacuum pump operating at higher altitudes may require higher power consumption. The pump needs to work harder to overcome the lower atmospheric pressure and maintain the necessary suction capacity. This increased power consumption can impact energy efficiency and operating costs.

5. Efficiency and Performance Variations: Different types of vacuum pumps may exhibit varying degrees of sensitivity to altitude. Oil-sealed rotary vane pumps, for example, may experience more significant performance variations compared to dry pumps or other pump technologies. The design and operating principles of the vacuum pump can influence its ability to maintain performance at higher altitudes.

It’s important to note that vacuum pump manufacturers typically provide specifications and performance curves for their pumps based on standardized conditions, often at or near sea level. When operating a vacuum pump at higher altitudes, it is advisable to consult the manufacturer’s guidelines and consider any altitude-related limitations or adjustments that may be necessary.

In summary, the altitude at which a vacuum pump operates can have an impact on its performance. The reduced atmospheric pressure at higher altitudes can result in decreased suction capacity, lower ultimate vacuum levels, reduced pumping speed, and potentially increased power consumption. Understanding these effects is crucial for selecting and operating vacuum pumps effectively in different altitude environments.

vacuum pump

Can Vacuum Pumps Be Used for Soil and Groundwater Remediation?

Vacuum pumps are indeed widely used for soil and groundwater remediation. Here’s a detailed explanation:

Soil and groundwater remediation refers to the process of removing contaminants from the soil and groundwater to restore environmental quality and protect human health. Vacuum pumps play a crucial role in various remediation techniques by facilitating the extraction and treatment of contaminated media. Some of the common applications of vacuum pumps in soil and groundwater remediation include:

1. Soil Vapor Extraction (SVE): Soil vapor extraction is a widely used remediation technique for volatile contaminants present in the subsurface. It involves the extraction of vapors from the soil by applying a vacuum to the subsurface through wells or trenches. Vacuum pumps create a pressure gradient that induces the movement of vapors towards the extraction points. The extracted vapors are then treated to remove or destroy the contaminants. Vacuum pumps play a vital role in SVE by maintaining the necessary negative pressure to enhance the volatilization and extraction of contaminants from the soil.

2. Dual-Phase Extraction (DPE): Dual-phase extraction is a remediation method used for the simultaneous extraction of both liquids (such as groundwater) and vapors (such as volatile organic compounds) from the subsurface. Vacuum pumps are utilized to create a vacuum in extraction wells or points, drawing out both the liquid and vapor phases. The extracted groundwater and vapors are then separated and treated accordingly. Vacuum pumps are essential in DPE systems for efficient and controlled extraction of both liquid and vapor-phase contaminants.

3. Groundwater Pumping and Treatment: Vacuum pumps are also employed in groundwater remediation through the process of pumping and treatment. They are used to extract contaminated groundwater from wells or recovery trenches. By creating a vacuum or negative pressure, vacuum pumps facilitate the flow of groundwater towards the extraction points. The extracted groundwater is then treated to remove or neutralize the contaminants before being discharged or re-injected into the ground. Vacuum pumps play a critical role in maintaining the required flow rates and hydraulic gradients for effective groundwater extraction and treatment.

4. Air Sparging: Air sparging is a remediation technique used to treat groundwater and soil contaminated with volatile organic compounds (VOCs). It involves the injection of air or oxygen into the subsurface to enhance the volatilization of contaminants. Vacuum pumps are utilized in air sparging systems to create a vacuum or negative pressure zone in wells or points surrounding the contaminated area. This induces the movement of air and oxygen through the soil, facilitating the release and volatilization of VOCs. Vacuum pumps are essential in air sparging by maintaining the necessary negative pressure gradient for effective contaminant removal.

5. Vacuum-Enhanced Recovery: Vacuum-enhanced recovery, also known as vacuum-enhanced extraction, is a remediation technique used to recover non-aqueous phase liquids (NAPLs) or dense non-aqueous phase liquids (DNAPLs) from the subsurface. Vacuum pumps are employed to create a vacuum or negative pressure gradient in recovery wells or trenches. This encourages the movement and extraction of NAPLs or DNAPLs towards the recovery points. Vacuum pumps facilitate the efficient recovery of these dense contaminants, which may not be easily recoverable using traditional pumping methods.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, or air-cooled pumps, may be used in soil and groundwater remediation depending on the specific requirements of the remediation technique and the nature of the contaminants.

In summary, vacuum pumps play a vital role in various soil and groundwater remediation techniques, including soil vapor extraction, dual-phase extraction, groundwater pumping and treatment, air sparging, and vacuum-enhanced recovery. By creating and maintaining the necessary pressure differentials, vacuum pumps enable the efficient extraction, treatment, and removal of contaminants, contributing to the restoration of soil and groundwater quality.

vacuum pump

What Is a Vacuum Pump, and How Does It Work?

A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

1. Sealed Chamber:

The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

2. Inlet and Outlet:

The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

3. Mechanical Action:

The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

– Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

– Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

– Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

4. Gas Evacuation:

As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

5. Exhaust or Collection:

Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

6. Pressure Control:

Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

7. Monitoring and Safety:

Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

China OEM High Quality Vrd Series Dual Stage Rotary Vane Vacuum Pump   vacuum pump ac system	China OEM High Quality Vrd Series Dual Stage Rotary Vane Vacuum Pump   vacuum pump ac system
editor by CX 2024-04-16

China high quality CZPT 11667640279 Auto Parts Brake Vacuum Pump for BMW F10 F11 F20 F21 F30 F80 F25 F26 E89 11667585189 vacuum pump electric

Product Description

Product Description

 

Product Name PERFECTRAIL Auto Parts Brake Vacuum Pump For BMW F10 F11 F20 F21 F30 F80 F25 F26 E89
OEM NO. 11667645719, 11667585189
Car Model FOR BMW 1 (F20) 2571-

FOR BMW 1 (F21) 2011-

FOR BMW 3 (F30, F80) 2011-

FOR BMW 3 Touring (F31) 2011-

FOR BMW 5 (F10) 2009-2016

FOR BMW 5 Touring (F11) 2009-

FOR BMW X1 (E84) 2009-2015

FOR BMW X3 (F25) 2571-

FOR BMW X4 (F26) 2013-2018

FOR BMW X4 (F26) 2013-2018

FOR BMW Z4 Roadster (E89) 2009-

Size OEM Standard
Weight OEM Standard
MOQ 1PC if we have stock, 50PCS for production.
Delivery Time 7-45 days
Our Advantage 1. Advanced design and skilled workmanship gurantee the standard of our products; 

2. High-quality raw materials gurantee the good performance of our products; 

3.Experienced teams and mangement gurantee the production efficiency and the delivery time; 

4.Our good service bring you pleasant purchase. 

5. The same length as original one. 

6. Lower MOQ is acceptable with more models. 

7.Laser Mark for free. 

8.Pallet with Film for free.

Detailed Photos

Our Advantages

 

Packaging & Shipping

 

Exhibition

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Brake Booster
Position: Front
Certification: ISO9001
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Vacuum Pump

How to check the vacuum pump

A vacuum pump is a machine that draws gas molecules from a volume and maintains a partial vacuum. Its main job is to create a relative vacuum within the stated capabilities. If your vacuum pump isn’t working properly, it may need service. Read on to learn more about the types of vacuum pumps and how to check them.

Principle of industrial vacuum pump

Industrial vacuum pumps are used in industrial processes that require vacuum. These pumps are designed to generate, improve and maintain vacuum. Learn about the different types of industrial vacuum technology. You can start by reading about the most common types of industrial vacuum pumps. These pumps can be used in a variety of industrial processes from cleaning to manufacturing.
Regardless of the technology used to manufacture these pumps, the basic principles behind their operation are the same. The speed and mass flow of the pump will determine its capacity and suitability. A faster flow rate will minimize the time it takes for the machine to empty. Another important factor to consider is the type of vacuum you need.
A liquid ring vacuum pump is an industrial pump that uses a ring of liquid to form a seal. This type of pump is best suited for applications with high vapor loads and high liquid carry-over. Liquid ring vacuum pumps can be divided into two categories: liquid ring vacuum pumps and scroll vacuum pumps.
Industrial vacuum pumps work by removing gas molecules from a chamber. The partial vacuum created allows material to flow through the void. As more molecules are removed, the pressure in the chamber decreases, releasing energy that can be used for a variety of different purposes.
The most common use of industrial vacuum pumps is for electric lights. In these lamps, a vacuum pump removes the gas, causing the bulb to light up. Energy from the vacuum is also used in aircraft to power instruments. In addition to powering industrial vacuum cleaners, they are used in a variety of other environments.
High-performance industrial vacuum systems require specific materials that can withstand extreme pressure. This means that the materials used in these systems need to be properly checked. They must also be free of organic debris and other contaminants before they can be safely placed in the chamber.

Types of vacuum pumps

There are various types of vacuum pumps. Which one to choose should depend on the purpose of the pump and the degree of vacuum that must be achieved. It is mainly divided into three categories: rough vacuum or low vacuum, high vacuum and ultra-high vacuum. They all have varying degrees of scarcity. The higher the pressure, the fewer molecules per cubic centimeter. This in turn improves vacuum quality.
The vacuum pump is critical to the operation of the vacuum system. These devices are divided into three main categories according to their working pressure range. These pumps have different characteristics and technologies that make them ideal for specific applications. The choice of vacuum pump required for a particular application depends on how much vacuum you need, and how much power you are willing to spend.
Vacuum pumps are used in a variety of industrial and scientific processes. Their main function is to remove gas molecules from the sealed volume, leaving a partial vacuum. There are many different types of vacuum pumps, including rotary piston, liquid ring and scroll vacuum pumps. In addition, turbomolecular pumps are used.
Dry vacuum pumps are more expensive than wet vacuum pumps. Wet vacuum pumps use oil as their lubricating fluid. Different types of oils are used depending on the application. Some wet pumps have additional features, including contaminant filtration. However, wet systems have one major disadvantage: the contact between oil and fluid. To avoid this, oil separators are usually used.
There are several different types of vacuum pumps. The basic type is the positive displacement pump. It operates by expanding the chamber and removing gas molecules. The intake valve draws fluid into the chamber, while the exhaust valve opens when the chamber is at maximum expansion. This cycle repeats several times per second. Positive displacement pumps are often used in multistage vacuum systems.
Vacuum Pump

Maintenance of vacuum pump

Regular maintenance is very important to ensure the long-term effective use of the vacuum pump. One way to ensure proper pump performance is to change the oil regularly. Pump oil may be contaminated by vapor condensation. To avoid this problem, close the inlet valve for 20 to 30 minutes before applying vacuum. It is also important to install an inlet cold trap to protect the pump from corrosive vapors.
Another way to prolong the life of your vacuum pump is to periodically remove any solvent in it. This step reduces internal corrosion and prevents premature pump failure. During maintenance, be sure to disconnect the power supply to the vacuum pump. After cleaning, store it in a dry and safe place. The pump should also be disposed of in accordance with local regulations.
Vacuum pumps may require frequent oil changes, especially when used in wet chemistry. The standard rule is to change the oil after 3,000 hours of use, but some pumps require more frequent oil changes. It is also important to clean the oil regularly, as dirty or discolored oil can affect the performance of the pump.
Vacuum pumps are often equipped with on-site glass to allow the user to visually check the oil level. Clean oil will appear transparent, while dirty oil will appear darker. Frequent oil changes are essential, as oil changes can help spot various potential problems. Changes in vacuum pump performance or strange noises are also good indicators of a problem.
After an oil change, the vacuum pump should be cleaned thoroughly with a soft cloth and mild degreaser. Oil changes should take less than ten minutes, and they will extend the life of your equipment. Additionally, the outside of the pump should be wiped with a cloth or rag.
The pump must be properly vented to avoid internal corrosion. If possible, place the pump away from hot equipment or rooms. Overheating can reduce the viscosity of the oil and cause premature pump failure. In addition, it can lead to overwork of other expensive scientific equipment. Heat can also cause cracked rubber parts and oil leaks.
Vacuum Pump

Signs of damage to the vacuum pump

A bad vacuum pump can cause a variety of automotive problems, including poor fuel economy, difficult braking, undercarriage oil leaks, and faulty air conditioning. If any of these problems occur, call a mechanic to check your vehicle’s vacuum pump. You can also check the air conditioner and brake pedal to see if they are working properly.
A loud noise from the pump can also be a symptom of a malfunction. These noises are often caused by the aging and accumulated wear of specific components. If this is the case, the diaphragm, valve plate or seals may need to be replaced. However, if the noise is coming from bearings or other areas, more extensive repairs may be required. Additionally, dust and other contaminants can enter the pump chamber, which can degrade pump performance.
If the vacuum pump won’t start, it could be a blown fuse or a power or voltage problem. Other common causes are flow restrictions or improper installation at the entrance. Also, the vacuum pump may be damaged or the capacitors may be of poor quality. It’s not always easy to tell if a vacuum pump is leaking oil, but a greasy transmission can indicate a vacuum pump failure.
A leaking vacuum pump can also hiss when the car’s engine is running. If you hear it, check the hoses and connections to make sure there are no leaks. A vacuum leak may indicate a faulty vacuum pump, so you need to replace it as soon as possible.
Checking end pressure is easy, but a pressure gauge can also serve as a sign. You can also check for pump vibration by running a short procedure. Excessive vibration can be subtle, but it can greatly affect your process. If you notice excessive pump vibration, you should contact a professional immediately.
Poor pump performance can cause many problems for your company. A bad vacuum pump not only wastes material, it also damages your tools and reputation.

China high quality CZPT 11667640279 Auto Parts Brake Vacuum Pump for BMW F10 F11 F20 F21 F30 F80 F25 F26 E89 11667585189   vacuum pump electricChina high quality CZPT 11667640279 Auto Parts Brake Vacuum Pump for BMW F10 F11 F20 F21 F30 F80 F25 F26 E89 11667585189   vacuum pump electric
editor by CX 2024-04-15

China high quality 3-4800 m3/ h Industrial  roots industrial Vacuum Pump for Dry Food vacuum pump connector

Product Description

DRF Series Roots Vacuum Pumps 

Advantages
DRF series roots vacuum pump is a technically mature vacuum pumping equipment, which help fore vacuum pump expand its working range under low inlet pressure condition after combing with fore vacuum pump:
1.Improve vacuum degree.
System vacuum degree could be enhanced to 1 order of magnitude higher if equipping with roots vacuum pump. If with 2 stage roots vacuum pump, performance could be even higher.

2.Increase pumping speed.
A pair of rotors of roots pump doesn’t contact with each other while rotating in high speed mode, which means small size roots pump also can be with high pumping speed. Fore vacuum pump can pump large capacity air in low speed by selecting suitable roots pump, obviously reducing energy consumption comparing with single fore vacuum pump with same speed.

3.Oil free
No oil in pump chamber of roots pump, no pollution on the pumped medium.
4.Superior character.
With transmission system adopting flexible hydraulic device – a kind of high-efficiency power transmission method, DRF series roots vacuum pump is with compact structure and superior characters as below:
1).Under reducing bypass pipes and valves installed or leaving inverter out designing condition, vacuum pump could acquire much better pumping effect than traditional booster pump, significantly saving production cost of hardware and decreasing the controlling requirement.
2).Hydraulic transmission device could automatically adjust pumping speed, motor will not be overloading or overheating even pumps work under high pressure condition.
3).Comparing with traditional direct driven, Roots vacuum pump will not get damaged even while inlet pressure changes in a sudden or aspiring foreign matter, stop failure rate can be much reduced.
4).At atmospheric pressure, DRF series roots vacuum pump can start with fore vacuum pump in the same time but motor will not be overloading, which can work for pumping process in earlier stage, shortening visibly pumping time, especially applying to applications which require for fast pumping speed.
5).Running in very smooth way, tiny vibration.
6).Reliable bearing sealing structure which ensures that no lubricant in pump chamber.
7).No bypass and valves, easy and simple maintainence.

Application
1.Industry: medical technology, industrial leakage detecting, electron beam welding, vacuum isolating, lamps&tubes manufacturing, heating processing,vacuum drying, lyophilization, vacuum furnace, metallurgical engineering.
2.R&D: nuclear research, melt technology, plasma research, tevatron, spatial simulation, low temperature research, elementary particle physics, nanotechnology, biotechnology.
3.Coating&Metallization: FPD(flat-panel display), LED/OLED, hard disk coating, photovoltaic cell, glass-type coating, CD-DVD-Blue ray, optical filming, wear-resistant coating.
4.Semiconductor: photoetching, printing & graphic arts, physical vapor deposition, chemical vapor deposition, plasma etching, ion implantation, beam injection, viewing, gluing, molecular beam epitaxy.

Technical Prameters

Model Unit DRF300 DRF500 DRF750 DRF1000 DRF2200 DRF3600
50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz
Nominal Pumping Speed m3/h 300 360 540 648 750 900 1000 1200 2200 2600 3600 4200
L/S 83 100 150 180 208 250 278 333 611 722 1000 1167
Ultimate pressure* Pa <2 <1
Motor power** kw 1.5/2.2 3.0/4.0 7.5/11
Motor rated rotation rpm 2900 3480 2900 3480 2900 3480 2900 3480 2900 3480 2900 3480
Noise level db(A) 64 65 64 65 68 69 68 69 73 74 73 74
Inlet connection DN ISO63 ISO100 ISO160 ISO160 ISO160 ISO250
Outlet connection DN ISO40 ISO63 ISO100 ISO100 ISO100 ISO100
A end oil capacity Liter 1.5 2.4 6.8
B end oil capacity Liter 0.8 1.3 3.7
Sealing oil capacity Liter 0.13 0.15
Cooling water connection*** Inch 1/4″ 3/8″
Gross weight kg 79 92 130 155 330 410
Dimensions(L*W*H) mm 783*323*324 863*323*304 932*330*384 992*330*384 1125*522*519 1365*522*519

*) Specifications are subject to change without prior notice

About CHINAMFG

Packaging&Shipping

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2: Our company is located in No. 6767, Tingfeng Rd. Xihu (West Lake) Dis.n District, ZheJiang  201502, China
And our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China

Q3: Warranty terms of your machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Work Function: Pre-Suction Pump
Working Conditions: Dry
Customization:
Available

|

roots vacuum pump

What Are the Differences Between Dry and Wet Roots Vacuum Pumps?

Dry and wet Roots vacuum pumps are two different types of pumps with distinct operating principles and characteristics. Here’s a detailed explanation of their differences:

1. Operating Principle:

– Dry Roots Vacuum Pump: A dry Roots vacuum pump operates without the use of any lubricating fluid or sealing liquid. It consists of two or more intermeshing lobed rotors that rotate in opposite directions, creating a series of expanding and contracting chambers. As the rotors rotate, gas is trapped in the chambers and carried from the inlet to the outlet, resulting in the generation of a vacuum.

– Wet Roots Vacuum Pump: A wet Roots vacuum pump, also known as a liquid ring pump, uses a liquid, typically water or another compatible liquid, as a sealing and working fluid. The liquid forms a rotating ring inside the pump, creating a seal between the lobes of the rotors. As the rotors turn, the liquid ring traps and carries the gas from the inlet to the outlet, creating a vacuum.

2. Lubrication and Sealing:

– Dry Roots Vacuum Pump: Dry Roots pumps do not require lubrication or sealing fluid. The absence of liquids eliminates the need for maintenance associated with fluid handling, such as oil changes or water management. Dry pumps are often preferred in applications where contamination from lubricants or sealing fluids is a concern, such as in semiconductor manufacturing or pharmaceutical industries.

– Wet Roots Vacuum Pump: Wet Roots pumps rely on a liquid seal for operation, requiring a continuous supply of sealing liquid, typically water. The liquid serves as both a sealant and a coolant for the pump. However, it also necessitates careful management of the liquid, including water supply, disposal, and potential contamination risks. Wet pumps are commonly used in applications where the presence of the sealing liquid is not a concern or can be easily managed.

3. Operation Efficiency:

– Dry Roots Vacuum Pump: Dry pumps are known for their high operational efficiency. They can achieve high pumping speeds and create substantial vacuum levels. Dry pumps are particularly suitable for processes that require quick pump-down times or applications where a deep vacuum is necessary.

– Wet Roots Vacuum Pump: Wet pumps typically have lower pumping speeds compared to dry pumps. While they can achieve moderate vacuum levels, they are not as effective in creating deep vacuums. Wet pumps are often used in processes where the pumping speed requirements are not as demanding, or in applications where the presence of the sealing liquid can provide benefits, such as in handling condensable gases or preventing contamination.

4. Application Suitability:

– Dry Roots Vacuum Pump: Dry pumps are commonly used in a wide range of applications, including semiconductor manufacturing, analytical instruments, vacuum packaging, and industrial processes. Their ability to handle different gases and their high operational efficiency make them suitable for various industries and processes.

– Wet Roots Vacuum Pump: Wet pumps find application in processes where the presence of a sealing liquid is advantageous. They are often used in applications involving the handling of water vapor, condensable gases, or corrosive gases. Wet pumps are utilized in industries such as chemical processing, pharmaceuticals, food processing, and environmental applications.

5. Maintenance and Care:

– Dry Roots Vacuum Pump: Dry pumps generally require less maintenance compared to wet pumps. They do not rely on sealing liquid, reducing the need for fluid changes, disposal, or monitoring of liquid levels. Dry pumps may require periodic maintenance, such as cleaning, inspection, and rotor lubrication, but the maintenance requirements are typically less frequent and less involved.

– Wet Roots Vacuum Pump: Wet pumps require regular maintenance due to the presence of the sealing liquid. Maintenance tasks include monitoring and replenishing the liquid, managing the water supply, and ensuring proper disposal of the used liquid. The sealing liquid may also require filtration or treatment to remove contaminants or prevent scaling or corrosion.

In summary, dry and wet Roots vacuum pumps differ in their operating principles, lubrication and sealing methods, operation efficiency, application suitability, and maintenance requirements. Dry pumps operate without lubrication or sealing fluid, offer high efficiency and are suitable for a wide range of applications. Wet pumps rely on a liquid seal, have lower pumping speeds, are used in applications where the liquid presence is advantageous, and require regular maintenance and care.

roots vacuum pump

What Are the Primary Applications of Roots Vacuum Pumps?

Roots vacuum pumps, also known as Roots blowers or rotary lobe pumps, are utilized in a variety of industrial applications where efficient and reliable vacuum generation is required. Here’s a detailed explanation of the primary applications of Roots vacuum pumps:

1. Chemical Processing: Roots vacuum pumps find extensive use in the chemical processing industry. They are employed for processes such as vacuum distillation, solvent recovery, drying, and degassing. Their high pumping speed and ability to handle corrosive gases make them suitable for handling various chemical vapors and byproducts.

2. Pharmaceuticals: In the pharmaceutical industry, Roots vacuum pumps are utilized for applications such as vacuum drying, tablet coating, freeze drying, and vacuum packaging. Their oil-free operation ensures a clean and contaminant-free vacuum environment, which is crucial for pharmaceutical manufacturing processes.

3. Food Processing: Roots vacuum pumps play a significant role in the food processing industry. They are employed for vacuum packaging, vacuum cooling, and vacuum drying of food products. The oil-free operation of Roots vacuum pumps ensures food safety and eliminates the risk of contamination.

4. Environmental Technology: Roots vacuum pumps are utilized in environmental technology applications, including wastewater treatment, biogas processing, and air pollution control. They are employed to extract gases, control emissions, and facilitate the treatment and purification of air and water.

5. Semiconductor Manufacturing: In the semiconductor industry, Roots vacuum pumps are used for processes such as ion implantation, physical vapor deposition (PVD), chemical vapor deposition (CVD), and etching. Their high pumping speed and oil-free operation are crucial for maintaining clean vacuum conditions required in semiconductor fabrication.

6. Packaging and Printing: Roots vacuum pumps are employed in packaging and printing applications. They are used for vacuum packaging of products, vacuum forming of packaging materials, and in printing presses for paper handling and ink transfer.

7. Automotive Industry: Roots vacuum pumps find application in the automotive industry for processes such as brake system vacuum assist, crankcase ventilation, and emissions control systems. They help create vacuum conditions required for the operation of various automotive systems.

8. Research and Laboratory: Roots vacuum pumps are utilized in research laboratories and scientific facilities for a wide range of applications. They are used in vacuum ovens, freeze dryers, vacuum filtration, electron microscopy, surface analysis, and other laboratory processes that require controlled vacuum environments.

9. Energy Industry: In the energy sector, Roots vacuum pumps are used for applications such as steam turbine condenser air extraction, transformer drying, and vacuum impregnation of electrical components. They help maintain proper vacuum conditions for efficient and reliable operation of energy systems.

These are some of the primary applications where Roots vacuum pumps are commonly used. Their high pumping speed, large gas handling capacity, oil-free operation, reliability, and versatility make them suitable for a wide range of industrial processes that require efficient and reliable vacuum generation.

China high quality 3-4800 m3/ h Industrial  roots industrial Vacuum Pump for Dry Food   vacuum pump connector	China high quality 3-4800 m3/ h Industrial  roots industrial Vacuum Pump for Dry Food   vacuum pump connector
editor by CX 2024-04-15

China high quality Hot Selling High Vacuum Cement Pump Screw for Construction Industry vacuum pump oil near me

Product Description

Hot Selling High Vacuum Cement Pump Screw for Construction Industry

Product introduction

Single screw pumps can be used for conveying single or multiple media fluids, including neutral or corrosive, clean or abrasive, gas-containing or bubble-prone, high-viscosity or low-viscosity, as well as liquids containing fibers or CHINAMFG particles, which are widely used in various industrial sectors.
Application areas
1Dirt treatment: sewage, dirty oil, sludge containing solids and all kinds of chemicals.
2Chemical industry: acid, alkali, salt, a variety of viscous pasty emulsion chemical slurry, molding ointment, dyes, pigments, inks, paints.
3Energy industry: a variety of fuel oil (oil, crude oil, diesel fuel) oil and coal, water, coal slurry, coal sludge and nuclear waste.
4Paper industry: a variety of cellulose and pulp, paint, black liquid treatment, etc.
5Ceramic industry: china clay, refractory clay, glaze, bentonite, silica.
6exploration and mining: all kinds of drilling mud, tunneling, oil, water, concrete multi-phase mixed transport.
7Pharmaceuticals, food, cosmetic industry, all kinds of syrup, jam, starch paste, paste, hops, mashed potatoes, alcohol, chocolate and so on.
Performance Parameter Table

Model Flow rate(m’/h) Lift (m) Presuure (MPa) Rotary rate(r /min) Motor power (kW) Inlet (mm) Outlet (mm)
G25-1 2 60 0.6 960 1.5 Dg32 Dg25
G25-2 2 120 1.2 2.2 Dg32 Dg25
G30-1 5 60 0.6 2.2 Dg50  Dg40
G30-2 5 120 12 3.0 Dg50  Dg40
G35-1 8 60 0.6 3.0 Dg65 Dg50
G35-2 8 120 12 4.0 Dg65  Dg50
040-1 12 60 06 4.0 Dg80 Dg65
G40-2 12 120 12 55 Dg80  Dg65
G50-1 20 60 0.6 55 Dg100 Dg80
G50-2 20 120 12 75 Dg100 Dg80
G60-1 30 60 0.6 11 Dg125 Dq100
G60-2 30 120 12 15 Dg125 Dg100
G70-1 45 60 0.6 15 Dg150 Dg125

Working principle
Screw pump is a propulsive volumetric pump, the main components are the rotor and stator, the rotor is a large lead and a large tooth height and a small spiral inner diameter of the screw (rotor) stator is matched with the double screw thread and the screw sleeve, so that between the rotor and the stator formed the storage medium space, when the rotor is running in the stator, the medium along the axial from the suction end of the discharging movement.
Work characteristics
-The spiral seal in contact with the stator and rotor completely separates the income chamber from the discharge chamber, so that the pump has the isolation effect of the valve.
-Multi-phase mixed transport of liquid, gas and CHINAMFG can be realized.
-The volume does not change when the fluid flows in the pump, there is no turbulent stirring and pulsation.
-The volume cavity formed by the elastic stator can effectively reduce the abrasion of the medium containing CHINAMFG particles.
-Input medium viscosity up to 5000MPa-S CHINAMFG content up to 50%.
-The flow rate is proportional to the rotational speed, and the automatic adjustment of the volume can be realized with the help of governor.
-Pumps can be positive and negative conveying.

Advantages

Compared with the centrifugal pump, screw pump does not need to install valves. Its flow is stable and linear.
Compared with the plunger pump, screw pump has strong self suction capacity and high suction height.
Compared with diaphragm pump, screw pump can transport various mixed impurities containing gas, CHINAMFG particles or fiber media, and can also transport various corrosive substances.
Compared with gear pump, screw pump can transport substances with high viscosity.
Unlike plunger pump, diaphragm pump and gear pump, screw pump can be used for reagent filling and metering.

 

Related product

Company profile

Recommended product

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Screw Number: Single Screw Pump
Screw Suction Method: Single Suction
Pump Shaft Position: Horizontal
Performance: No Leak
Customization:
Available

|

vacuum pump

What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?

Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:

Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.

Here are some key roles of vacuum pumps in semiconductor manufacturing:

1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.

2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.

3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.

4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.

5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.

6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.

7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.

8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.

Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.

Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China high quality Hot Selling High Vacuum Cement Pump Screw for Construction Industry   vacuum pump oil near me		China high quality Hot Selling High Vacuum Cement Pump Screw for Construction Industry   vacuum pump oil near me
editor by CX 2024-04-13

China Good quality Zjp Wholesale Price High Vacuum Degree Booster Roots Vacuum Pump manufacturer

Product Description

Product Description

ZJP Series Roots Vacuum Pump
 

Overview
Mechanical booster pump is 1 pump which has 2 impellers with same high rotary speed, make suction and exhaust by 2 8-shape rotor rotate in the pump shell, same principle with Roots blower. Because of low-pressure range,large free distance of gas molecules,a lot of resistance when gas pass tiny cracks and thus obtain a higher compression ratio, so it can be used as a booster pump; But it should used in series with pre-vacuum pump, the working process as follow figure 1 : 

Feature

(1)There is no touch between rotors, no need of oil lubrication. 

(2)Rotor has a good geometric symmetry, non-friction, low power consumption, smooth running, low noise, faster speed direct drive, small size, light weight, and large pumping speed. 

(3)There is no compressor phenomena like the vacuum pump in the pump cavity, therefore, no needs of exhaust valve and extract condensable vapour. 

(4)It can reach to ultimate vacuum in short time and low-cost. 

(5)The pump install valve on side to make sure its’ safe and reliable operation. 

(6)The pump have a high speed in the pressure range(1.3×1000~1.3pa),can exhaust gas fast, which make up for the fault that diffusion pump and oil seal pump with low speed in the pressure range(1.3×1000~1.3pa). 

This kind of pump is widely used to vacuum degassing refining in metallurgical industry, vacuum treatment of molten steel and heat treatment, etc, Food, Medicine, Motor manufacture industry, especially point out when the packing pump as two-stage liquid ring vacuum pump, it can extract the gas with a lot of steam, therefore, it suit to Distillation, evaporation, freezing, drying process…
 

The type of this pump have : ZJP-30,ZJP-70,ZJP-150,ZJP-300,ZJP-600,ZJP-1200. 

ZJP-Roots booster pump (P means it have valve on side) 

30/70/150/300/600/1200-means main pump speed are 30/70/150/300/600/1200L/S
 

Specifications

 

Detailed Photos

 

Packaging & Shipping

Packing Details  : One pump in One plywood case
Delivery Details : 30 days after order confirmation

Standard package without original wood, no fumigation needed.

 

Company Profile

ZheZheJiang oto Pump Industrial Co., Ltd. is a professional pump manufacturer integrating R&D, manufacturing, sales and service as a whole, which has been certified by ISO9001 international quality management system. 

Located in Xihu (West Lake) Dis.a Industrial Park, ZheJiang , CHINAMFG Pump Industrial possesses 2 manufacturing bases in ZheJiang and ZHangZhoug. Since our inception, CHINAMFG Pump Industrial has been committed to the innovation and development of various pumps. Our leading products include self-priming trash pump, centrifugal pump, submersible pump, diaphragm pump, vacuum pump, diesel pump, fire pump, etc.

 

FAQ

Q: Can I chat with you online? What is your company official website?
A: Yes.  Our company official website is . 

Q: What type of company CHINAMFG is? 
A: CHINAMFG is a manufacture and trading company, has factories in ZheJiang and ZHangZhoug, with export and import license.

Q: What kinds of pumps do you supply?
A: Our products including self-priming trash pump, centrifugal pump, diaphragm pump, submersible pump, chemical pump, oil pump, diesel pump, fire fighting pump, etc.

Q: What is your payment terms?
A: Alibaba Trade Assurance, Western Union, Paypal, T/T, L/C, etc.

Q: Can you provide OEM, ODM service?
A: Yes. We have factories in ZheJiang and ZHangZhoug, we can make products according to your requirements.

Q: Why should we buy from you?
A: We are committed to provide best quality products at minimum delivery time and competitive price. We believe this is what customer wants. We are satified until customers are.

Q: What is your warranty period?
A: We provide 1 year of unconditional warranty on our products for the manufacturing defects.

Q: What about delivery time?
A: Normally our production time is within 2 weeks. Please confirm before order.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Jet Flow Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Samples:
US$ 400/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

roots vacuum pump

What Is the Significance of Roots Vacuum Pumps in the Aerospace Sector?

Roots vacuum pumps play a significant role in various applications within the aerospace sector. Here’s a detailed explanation:

1. Space Simulation Chambers:

– Vacuum Simulation: Roots vacuum pumps are utilized in space simulation chambers to create and maintain vacuum conditions similar to the space environment. These chambers are used to test and simulate the performance of aerospace components and systems under low-pressure conditions, including the effects of vacuum on materials, electronics, and mechanical systems.

– Thermal Vacuum Testing: Roots pumps are crucial in thermal vacuum testing, where aerospace components and systems are subjected to extreme temperature and vacuum conditions. The pumps help evacuate the test chamber and maintain the required vacuum level, enabling accurate thermal testing and evaluation of aerospace equipment’s performance and functionality in space-like conditions.

2. Propellant Handling and Storage:

– Rocket Engine Testing: Roots vacuum pumps are employed in rocket engine testing facilities for propellant handling and storage. They assist in creating a vacuum environment during the propellant loading and purging processes, ensuring the removal of air or contaminants from the propellant tanks and lines. This helps maintain the propellant’s quality and prevents potential issues, such as cavitation or gas bubble formation, that could affect engine performance.

– Fuel Systems: Roots pumps are used in aerospace fuel systems to evacuate and degas the fuel tanks, ensuring the removal of air or gas bubbles that may compromise fuel delivery and engine operation. These pumps contribute to the overall efficiency, reliability, and safety of fuel systems in aerospace vehicles.

3. Environmental Control Systems (ECS):

– Cabin Pressure Control: Roots vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft to help control cabin pressure. By creating a vacuum or adjusting the air circulation, these pumps assist in maintaining the desired cabin pressure levels, ensuring passenger comfort, and providing a safe and controlled environment during flight.

4. Avionics and Electronics:

– Electronic Component Testing: Roots vacuum pumps are employed in the testing and validation of avionics and electronic components used in aerospace applications. These pumps assist in creating a controlled vacuum environment during testing, allowing engineers to evaluate the performance, reliability, and durability of electronic systems under low-pressure conditions.

– Vacuum Encapsulation: In certain aerospace applications, electronic components or circuits may require vacuum encapsulation for protection against harsh environmental conditions, including high altitude, temperature variations, or moisture. Roots vacuum pumps are utilized to create the necessary vacuum environment for the encapsulation process, ensuring the integrity and longevity of sensitive electronics.

5. Space Propulsion Systems:

– Ion Thrusters and Electric Propulsion: Roots vacuum pumps are integral components of ion thrusters and electric propulsion systems used in spacecraft. These pumps aid in the creation and maintenance of the high vacuum conditions required for the operation of these advanced propulsion technologies. They contribute to the efficient exhaust gas removal, ensuring optimal thrust generation and fuel efficiency.

6. Satellite Manufacturing and Testing:

– Satellite Chamber Evacuation: Roots vacuum pumps are utilized in satellite manufacturing and testing facilities for the evacuation of satellite chambers. These pumps help create the required vacuum conditions during satellite assembly, testing, and payload integration, ensuring the cleanliness, functionality, and performance of satellite systems and instruments.

In summary, Roots vacuum pumps have significant significance in the aerospace sector. They are utilized in space simulation chambers, propellant handling and storage, environmental control systems, avionics and electronics testing, space propulsion systems, and satellite manufacturing and testing. By creating and maintaining vacuum conditions, Roots pumps contribute to the performance, reliability, and safety of aerospace components, systems, and vehicles. They play a vital role in supporting space exploration, satellite communication, and the advancement of aerospace technologies.

roots vacuum pump

What Is a Roots Vacuum Pump, and How Does It Work?

A Roots vacuum pump, also known as a Roots blower or a rotary lobe pump, is a type of positive displacement vacuum pump that is widely used for various industrial applications. Here’s a detailed explanation of what a Roots vacuum pump is and how it works:

A Roots vacuum pump consists of two synchronized rotors, known as lobes or impellers, that rotate in opposite directions within a housing. The lobes have a unique helical shape with multiple lobes, which allows them to trap and move gas efficiently. The rotors are synchronized with the help of timing gears to maintain precise clearances between the lobes and the housing.

The operation of a Roots vacuum pump can be described in the following steps:

1. Inlet Stage: The process begins with the lobes rotating in opposite directions. As the lobes rotate, the volume between them and the housing gradually increases, creating a larger space at the inlet side of the pump. This expansion of the volume causes the gas to enter the pump through the inlet port. The gas is drawn in due to the pressure difference between the inlet and the pump’s internal chamber.

2. Compression Stage: As the gas enters the pump, it gets trapped in the spaces between the lobes and the housing. As the lobes continue to rotate, the trapped gas gets carried along the rotating lobes. The gas is essentially trapped in the pockets formed by the lobes and the housing. The rotating lobes then compress the gas as they move towards the outlet side of the pump.

3. Outlet Stage: As the lobes approach the outlet side of the pump, the volume between them and the housing decreases, resulting in the compression of the trapped gas. This compression raises the pressure of the gas, causing it to be expelled through the outlet port of the pump. The expelled gas is then discharged into the atmosphere or directed to a downstream process or another vacuum pump, depending on the application.

It’s important to note that a Roots vacuum pump operates as a non-contacting pump, meaning that there is no physical contact between the lobes or between the lobes and the housing. This characteristic eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system.

Roots vacuum pumps are known for their high pumping speed and ability to handle large volumes of gas. However, they are not capable of achieving high vacuum levels on their own. To achieve higher vacuum levels, a Roots pump is often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in a hybrid or combination pumping system.

In summary, a Roots vacuum pump operates based on the principle of positive displacement. It utilizes synchronized rotating lobes to trap and compress gas, allowing it to be discharged at a higher pressure. The non-contacting design of the pump eliminates the need for lubrication and reduces the risk of contamination. Roots vacuum pumps are commonly employed in various industrial applications, especially when high pumping speed and large gas handling capacity are required.

China Good quality Zjp Wholesale Price High Vacuum Degree Booster Roots Vacuum Pump   manufacturer China Good quality Zjp Wholesale Price High Vacuum Degree Booster Roots Vacuum Pump   manufacturer
editor by CX 2024-04-13