Tag Archives: roots blower vacuum pump

China Custom Roots Blower Rotary Lobe Vacuum Air Pump vacuum pump engine

Product Description

Description:
High Negative Pressure Three Lobe Roots Vacuum Pump
1) When running, the ultimate vacuum is as high as – 50Kpa.
2) The theoretical displacement range is 1000-10500m3/h.
3) It can be used to transport industrial gases and steam.
4) No sliding friction parts, reducing wear.
5) Environmental protection and safe operation
6)No oil mist in the exhaust.
7)It can meet ATEX standard explosion-proof requirements.

Main structure

 

Model Diameter(mm) Pressure range  Vacuum pressure(Kpa) Air flow range (M3/min)
5006 DN100 -10 ~  – 50 Kpa 2.12 ~ 13.64
6008 DN125 -10 ~  – 50 Kpa 3.86 ~ 21.75
7011 DN150 -10 ~  – 50 Kpa 9.56~33.20
8016 DN200 -10 ~  – 50 Kpa 12.80~ 49.65

       
Blower Main Parts Materials

  Casing Cast iron HT 200
 Rotor (Impeller &shaft) QT 500
Gear 20CrMnTi 
Bearing Japanese NSK
Oil seal USA CR
Oil tank Double Oil Tanks, Clean Site

Impeller CNC machining center

Working shop
 

Application pictures

*** After running more than 1 year , there are very clean on site , no oil leakage

Packing & delivery
Our wooden case is with fumigation sign, It is Moisture-proof

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Type: Materials Vacuum Conveying
Usage: Industrial, Agriculture, Hospital, Special Gas Pressurized Conveying
Material: Casting Iron Ht200
Application: Sewage and Waste Water Treatment
Customization:
Available

|

roots vacuum pump

Can Roots Vacuum Pumps Be Used for Vacuum Impregnation in Manufacturing?

Yes, Roots vacuum pumps can be used for vacuum impregnation in manufacturing. Here’s a detailed explanation:

1. Vacuum Impregnation in Manufacturing: Vacuum impregnation is a process used in manufacturing to fill porous materials or components with a liquid or resin. It is commonly employed to enhance the properties of materials by improving their strength, sealing capability, or resistance to chemicals or corrosion. The process involves placing the porous material in a vacuum chamber and removing the air or gas trapped within its pores. Once a vacuum is established, a liquid or resin is introduced, and the vacuum is released, allowing the material to absorb the impregnating substance.

2. Role of Roots Vacuum Pumps: Roots vacuum pumps play a crucial role in the vacuum impregnation process by creating and maintaining the required vacuum conditions. Here’s how they contribute:

– Evacuation: Roots pumps are used to evacuate the impregnation chamber, removing the air and gas from within the pores of the porous material. By creating a vacuum, the trapped gases are extracted, creating a void space for the impregnating substance to penetrate.

– Pressure Control: Roots pumps help control the pressure within the impregnation chamber during different stages of the process. They can rapidly achieve and maintain the desired vacuum level, ensuring proper impregnation of the material and preventing the formation of air bubbles or voids.

– Gas Removal: Roots pumps effectively remove gases released from the impregnating substance during the impregnation process. As the liquid or resin fills the pores of the porous material, gases may be released due to the reaction or outgassing. The vacuum pump evacuates these gases, preventing their accumulation and ensuring complete impregnation.

3. Advantages of Roots Vacuum Pumps for Vacuum Impregnation:

– High Pumping Speed: Roots vacuum pumps have a high pumping speed, enabling rapid evacuation of the impregnation chamber. This reduces the overall impregnation cycle time, increasing manufacturing throughput and efficiency.

– Large Volume Handling: Roots pumps are capable of handling large volumes of gas, allowing them to evacuate chambers of different sizes effectively. This is advantageous when impregnating large or complex-shaped components that require a significant amount of impregnating substance.

– Continuous Operation: Roots pumps can operate continuously, maintaining the vacuum conditions required for impregnation throughout the process. This ensures consistent impregnation results and reduces the risk of incomplete impregnation or material defects.

– Compatibility with Impregnating Substances: Roots vacuum pumps are compatible with a wide range of impregnating substances, including resins, oils, solvents, and other liquids. They can handle different chemical compositions and provide a clean and efficient environment for the impregnation process.

4. Considerations for Vacuum Impregnation:

– Material Compatibility: It is essential to consider the compatibility of the porous material with the impregnating substance and the impregnation process itself. Some materials may require pre-treatment or surface preparation before impregnation. The choice of impregnating substance should also align with the material’s properties and intended application.

– Process Parameters: Vacuum impregnation involves controlling various process parameters, such as vacuum level, impregnation time, pressure release, and curing conditions. These parameters may vary depending on the material, impregnating substance, and desired impregnation results. Proper process optimization and control are crucial for achieving consistent and reliable impregnation outcomes.

– System Design: The design of the vacuum impregnation system should consider factors such as chamber size, gas flow rates, vacuum pump capacity, and pressure control mechanisms. Proper system design ensures efficient operation, reliable vacuum conditions, and effective impregnation of the porous material.

In summary, Roots vacuum pumps are well-suited for vacuum impregnation in manufacturing. Their high pumping speed, large volume handling capability, continuous operation, and compatibility with impregnating substances make them effective in creating and maintaining the required vacuum conditions for successful impregnation. By considering material compatibility, process parameters, and system design, Roots vacuum pumps contribute to the efficient and reliable impregnation of porous materials in various manufacturing applications.

roots vacuum pump

What Is a Roots Vacuum Pump, and How Does It Work?

A Roots vacuum pump, also known as a Roots blower or a rotary lobe pump, is a type of positive displacement vacuum pump that is widely used for various industrial applications. Here’s a detailed explanation of what a Roots vacuum pump is and how it works:

A Roots vacuum pump consists of two synchronized rotors, known as lobes or impellers, that rotate in opposite directions within a housing. The lobes have a unique helical shape with multiple lobes, which allows them to trap and move gas efficiently. The rotors are synchronized with the help of timing gears to maintain precise clearances between the lobes and the housing.

The operation of a Roots vacuum pump can be described in the following steps:

1. Inlet Stage: The process begins with the lobes rotating in opposite directions. As the lobes rotate, the volume between them and the housing gradually increases, creating a larger space at the inlet side of the pump. This expansion of the volume causes the gas to enter the pump through the inlet port. The gas is drawn in due to the pressure difference between the inlet and the pump’s internal chamber.

2. Compression Stage: As the gas enters the pump, it gets trapped in the spaces between the lobes and the housing. As the lobes continue to rotate, the trapped gas gets carried along the rotating lobes. The gas is essentially trapped in the pockets formed by the lobes and the housing. The rotating lobes then compress the gas as they move towards the outlet side of the pump.

3. Outlet Stage: As the lobes approach the outlet side of the pump, the volume between them and the housing decreases, resulting in the compression of the trapped gas. This compression raises the pressure of the gas, causing it to be expelled through the outlet port of the pump. The expelled gas is then discharged into the atmosphere or directed to a downstream process or another vacuum pump, depending on the application.

It’s important to note that a Roots vacuum pump operates as a non-contacting pump, meaning that there is no physical contact between the lobes or between the lobes and the housing. This characteristic eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system.

Roots vacuum pumps are known for their high pumping speed and ability to handle large volumes of gas. However, they are not capable of achieving high vacuum levels on their own. To achieve higher vacuum levels, a Roots pump is often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in a hybrid or combination pumping system.

In summary, a Roots vacuum pump operates based on the principle of positive displacement. It utilizes synchronized rotating lobes to trap and compress gas, allowing it to be discharged at a higher pressure. The non-contacting design of the pump eliminates the need for lubrication and reduces the risk of contamination. Roots vacuum pumps are commonly employed in various industrial applications, especially when high pumping speed and large gas handling capacity are required.

China Custom Roots Blower Rotary Lobe Vacuum Air Pump   vacuum pump engine	China Custom Roots Blower Rotary Lobe Vacuum Air Pump   vacuum pump engine
editor by CX 2024-04-16

China manufacturer Oil-Free Two-Stage Blower Rotor Roots Vacuum Pump for Vacuum Kneading with Best Sales

Product Description

DRF Series Roots Vacuum Pumps 

Advantages
DRF series roots vacuum pump is a technically mature vacuum pumping equipment, which help fore vacuum pump expand its working range under low inlet pressure condition after combing with fore vacuum pump:
1.Improve vacuum degree.
System vacuum degree could be enhanced to 1 order of magnitude higher if equipping with roots vacuum pump. If with 2 stage roots vacuum pump, performance could be even higher.

2.Increase pumping speed.
A pair of rotors of roots pump doesn’t contact with each other while rotating in high speed mode, which means small size roots pump also can be with high pumping speed. Fore vacuum pump can pump large capacity air in low speed by selecting suitable roots pump, obviously reducing energy consumption comparing with single fore vacuum pump with same speed.

3.Oil free
No oil in pump chamber of roots pump, no pollution on the pumped medium.
4.Superior character.
With transmission system adopting flexible hydraulic device – a kind of high-efficiency power transmission method, DRF series roots vacuum pump is with compact structure and superior characters as below:
1).Under reducing bypass pipes and valves installed or leaving inverter out designing condition, vacuum pump could acquire much better pumping effect than traditional booster pump, significantly saving production cost of hardware and decreasing the controlling requirement.
2).Hydraulic transmission device could automatically adjust pumping speed, motor will not be overloading or overheating even pumps work under high pressure condition.
3).Comparing with traditional direct driven, Roots vacuum pump will not get damaged even while inlet pressure changes in a sudden or aspiring foreign matter, stop failure rate can be much reduced.
4).At atmospheric pressure, DRF series roots vacuum pump can start with fore vacuum pump in the same time but motor will not be overloading, which can work for pumping process in earlier stage, shortening visibly pumping time, especially applying to applications which require for fast pumping speed.
5).Running in very smooth way, tiny vibration.
6).Reliable bearing sealing structure which ensures that no lubricant in pump chamber.
7).No bypass and valves, easy and simple maintainence.

Application
1.Industry: medical technology, industrial leakage detecting, electron beam welding, vacuum isolating, lamps&tubes manufacturing, heating processing,vacuum drying, lyophilization, vacuum furnace, metallurgical engineering.
2.R&D: nuclear research, melt technology, plasma research, tevatron, spatial simulation, low temperature research, elementary particle physics, nanotechnology, biotechnology.
3.Coating&Metallization: FPD(flat-panel display), LED/OLED, hard disk coating, photovoltaic cell, glass-type coating, CD-DVD-Blue ray, optical filming, wear-resistant coating.
4.Semiconductor: photoetching, printing & graphic arts, physical vapor deposition, chemical vapor deposition, plasma etching, ion implantation, beam injection, viewing, gluing, molecular beam epitaxy.

Technical Prameters

Model Unit DRF3

Fax:

Website: http://shdenair
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Work Function: Mainsuction Pump
Working Conditions: Wet
Customization:
Available

|

roots vacuum pump

Can Roots Vacuum Pumps Be Used for Vacuum Impregnation in Manufacturing?

Yes, Roots vacuum pumps can be used for vacuum impregnation in manufacturing. Here’s a detailed explanation:

1. Vacuum Impregnation in Manufacturing: Vacuum impregnation is a process used in manufacturing to fill porous materials or components with a liquid or resin. It is commonly employed to enhance the properties of materials by improving their strength, sealing capability, or resistance to chemicals or corrosion. The process involves placing the porous material in a vacuum chamber and removing the air or gas trapped within its pores. Once a vacuum is established, a liquid or resin is introduced, and the vacuum is released, allowing the material to absorb the impregnating substance.

2. Role of Roots Vacuum Pumps: Roots vacuum pumps play a crucial role in the vacuum impregnation process by creating and maintaining the required vacuum conditions. Here’s how they contribute:

– Evacuation: Roots pumps are used to evacuate the impregnation chamber, removing the air and gas from within the pores of the porous material. By creating a vacuum, the trapped gases are extracted, creating a void space for the impregnating substance to penetrate.

– Pressure Control: Roots pumps help control the pressure within the impregnation chamber during different stages of the process. They can rapidly achieve and maintain the desired vacuum level, ensuring proper impregnation of the material and preventing the formation of air bubbles or voids.

– Gas Removal: Roots pumps effectively remove gases released from the impregnating substance during the impregnation process. As the liquid or resin fills the pores of the porous material, gases may be released due to the reaction or outgassing. The vacuum pump evacuates these gases, preventing their accumulation and ensuring complete impregnation.

3. Advantages of Roots Vacuum Pumps for Vacuum Impregnation:

– High Pumping Speed: Roots vacuum pumps have a high pumping speed, enabling rapid evacuation of the impregnation chamber. This reduces the overall impregnation cycle time, increasing manufacturing throughput and efficiency.

– Large Volume Handling: Roots pumps are capable of handling large volumes of gas, allowing them to evacuate chambers of different sizes effectively. This is advantageous when impregnating large or complex-shaped components that require a significant amount of impregnating substance.

– Continuous Operation: Roots pumps can operate continuously, maintaining the vacuum conditions required for impregnation throughout the process. This ensures consistent impregnation results and reduces the risk of incomplete impregnation or material defects.

– Compatibility with Impregnating Substances: Roots vacuum pumps are compatible with a wide range of impregnating substances, including resins, oils, solvents, and other liquids. They can handle different chemical compositions and provide a clean and efficient environment for the impregnation process.

4. Considerations for Vacuum Impregnation:

– Material Compatibility: It is essential to consider the compatibility of the porous material with the impregnating substance and the impregnation process itself. Some materials may require pre-treatment or surface preparation before impregnation. The choice of impregnating substance should also align with the material’s properties and intended application.

– Process Parameters: Vacuum impregnation involves controlling various process parameters, such as vacuum level, impregnation time, pressure release, and curing conditions. These parameters may vary depending on the material, impregnating substance, and desired impregnation results. Proper process optimization and control are crucial for achieving consistent and reliable impregnation outcomes.

– System Design: The design of the vacuum impregnation system should consider factors such as chamber size, gas flow rates, vacuum pump capacity, and pressure control mechanisms. Proper system design ensures efficient operation, reliable vacuum conditions, and effective impregnation of the porous material.

In summary, Roots vacuum pumps are well-suited for vacuum impregnation in manufacturing. Their high pumping speed, large volume handling capability, continuous operation, and compatibility with impregnating substances make them effective in creating and maintaining the required vacuum conditions for successful impregnation. By considering material compatibility, process parameters, and system design, Roots vacuum pumps contribute to the efficient and reliable impregnation of porous materials in various manufacturing applications.

roots vacuum pump

What Is a Roots Vacuum Pump, and How Does It Work?

A Roots vacuum pump, also known as a Roots blower or a rotary lobe pump, is a type of positive displacement vacuum pump that is widely used for various industrial applications. Here’s a detailed explanation of what a Roots vacuum pump is and how it works:

A Roots vacuum pump consists of two synchronized rotors, known as lobes or impellers, that rotate in opposite directions within a housing. The lobes have a unique helical shape with multiple lobes, which allows them to trap and move gas efficiently. The rotors are synchronized with the help of timing gears to maintain precise clearances between the lobes and the housing.

The operation of a Roots vacuum pump can be described in the following steps:

1. Inlet Stage: The process begins with the lobes rotating in opposite directions. As the lobes rotate, the volume between them and the housing gradually increases, creating a larger space at the inlet side of the pump. This expansion of the volume causes the gas to enter the pump through the inlet port. The gas is drawn in due to the pressure difference between the inlet and the pump’s internal chamber.

2. Compression Stage: As the gas enters the pump, it gets trapped in the spaces between the lobes and the housing. As the lobes continue to rotate, the trapped gas gets carried along the rotating lobes. The gas is essentially trapped in the pockets formed by the lobes and the housing. The rotating lobes then compress the gas as they move towards the outlet side of the pump.

3. Outlet Stage: As the lobes approach the outlet side of the pump, the volume between them and the housing decreases, resulting in the compression of the trapped gas. This compression raises the pressure of the gas, causing it to be expelled through the outlet port of the pump. The expelled gas is then discharged into the atmosphere or directed to a downstream process or another vacuum pump, depending on the application.

It’s important to note that a Roots vacuum pump operates as a non-contacting pump, meaning that there is no physical contact between the lobes or between the lobes and the housing. This characteristic eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system.

Roots vacuum pumps are known for their high pumping speed and ability to handle large volumes of gas. However, they are not capable of achieving high vacuum levels on their own. To achieve higher vacuum levels, a Roots pump is often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in a hybrid or combination pumping system.

In summary, a Roots vacuum pump operates based on the principle of positive displacement. It utilizes synchronized rotating lobes to trap and compress gas, allowing it to be discharged at a higher pressure. The non-contacting design of the pump eliminates the need for lubrication and reduces the risk of contamination. Roots vacuum pumps are commonly employed in various industrial applications, especially when high pumping speed and large gas handling capacity are required.

China manufacturer Oil-Free Two-Stage Blower Rotor Roots Vacuum Pump for Vacuum Kneading   with Best Sales China manufacturer Oil-Free Two-Stage Blower Rotor Roots Vacuum Pump for Vacuum Kneading   with Best Sales
editor by CX 2024-04-16

China Professional Zj 250/500/1200/2400 Dry Blower Booster High Precision Roots Vacuum Pump with Great quality

Product Description

Overview
Roots vacuum pump (referred to as roots pump for short) is a non-internal compression type rotary positive displacement pump, which achieves suction and exhaust by 2 8-shape rotors rotating in the pump shell. Its principle is similar with roots blower. As it works within the low pressure range, the free paths of the gas molecules are long, and the resistance is strong for gas to pass through small gaps, thus, it is able to obtain a higher compression ratio, and can be used as a booster vacuum pump; But it can not directly exhaust the gas into the atmosphere alone, and it shall be connected with a fore vacuum pump in series, and exhaust the pumped gas into the atmosphere through the fore vacuum pump.

Features
1. There is a certain gas between the rotor and pump chamber, and between rotors. They do not contact with each other, and do not need oil lubrication.
2. Rotor has a good geometric symmetry, and can improve the rotary speed so as to produce a compact large pumping rate pump. 3. Pump works with small vibration and large capacity, and the capacity utilization factor is around 0.5.
4. In the pump chamber, there is no compression as the mechanical vacuum pump does, so it does not require an exhaust valve. For this reason, it can be used to pump the condensable vapors.
5. It starts fast, and can achieve the ultimate vacuum in a short period. It has low power and low maintenance cost for operation.
6. Roots pump owns a high pumping rate in a wide range of pressures (1000PA ~ 1PA). It is able to quickly exhaust the gases which are suddenly released of gas, and cover the shortage of low pumping rate of the diffusion pump and oil sealed mechanical pump under the pressure of (1000PA ~ 1PA). As a result, it is most suitable used as a booster pump.

Applications
ZJ series roots vacuum pump is a kind of rotary positive displacement pump, which must be used with a fore pump. It has a higher pumping rate in a wider pressure range, and not sensitive to the pumped gases which contain dust or water vapor. Therefore, it is widely used in the metallurgy, chemical industry, food, electronic coating and other industries.

Performance Table

Model (L/S) Pumping
Speed
≤ (Pa) Ultimate
Pressure
(rpm) Rotational
Speed
(Kw) Motor
Power
(mm)
Diameter
(Kg) Weight Recommended Model
of Backing Pump
Inlet Outlet
ZJ-30 30 5× 10 -2 2825 0.75 50 40 76 2X-4A
ZJ-70 70 5× 10 -2 2840 1.5 80 50 96 2X-8A
ZJ-150A 150 5× 10 -2 2880 3 100 100 200 2X-15
ZJ-300 300 5× 10 -2 1440 4 150 150 505 2X-30A
ZJ-600 600 5× 10 -2 2800 7.5 150 150 520 2X-70A
ZJ-1200A 1200 5× 10 -2 1450 11 300 300 1550 2X-70A(two)
ZJ-2500 2500 5× 10 -2 2880 18.5 300 300 1600 ZJ-600
2X-70A(two)

Detailed Photos

Certifications

Packaging & Shipping

Packing Details  : One pump in One plywood case
Delivery Details : 30 days after order confirmation
 

 

Company Profile

ZheZheJiang oto Pump Industrial Co., Ltd. is a professional pump manufacturer integrating R&D, manufacturing, sales and service as a whole, which has been certified by ISO9001 international quality management system. 

Located in Xihu (West Lake) Dis.a Industrial Park, ZheJiang , CHINAMFG Pump Industrial possesses 2 manufacturing bases in ZheJiang and ZHangZhoug. Since our inception, CHINAMFG Pump Industrial has been committed to the innovation and development of various pumps. Our leading products include self-priming trash pump, centrifugal pump, submersible pump, diaphragm pump, vacuum pump, diesel pump, fire pump, etc.

FAQ

Q: Can I chat with you online? What is your company official website?
   

Q: What type of company CHINAMFG is? 
A: CHINAMFG is a manufacture an trading company, has factories in ZheJiang and ZHangZhoug, with export and import license.

Q: What kinds of pumps do you supply?
A: Our products including self-priming trash pump, centrifugal pump, diaphragm pump, submersible pump, chemical pump, oil pump, diesel pump, fire fighting pump, etc.

Q: What is your payment terms?
A: Alibaba Trade Assurance, Western Union, Paypal, T/T, L/C, etc.

Q: Can you provide OEM, ODM service?
A: Yes. We have factories in ZheJiang and ZHangZhoug, we can make products according to your requirements.

Q: Why should we buy from you?
A: We are committed to provide best quality products at minimum delivery time and competitive price. We believe this is what customer wants. We are satified until customers are.

Q: What is your warranty period?
A: We provide 1 year of unconditional warranty on our products for the manufacturing defects.

Q: What about delivery time?
A: Normally our production time is within 2 weeks. Please confirm before order.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Provided
Warranty: 1year
Structure: Single Cylinder
Power: Electric
Application: Pharmaceutical Production
Performance: No Leak
Samples:
US$ 8000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

roots vacuum pump

How Are Roots Vacuum Pumps Utilized in the Automotive Industry?

Roots vacuum pumps play a significant role in various applications within the automotive industry. Here’s a detailed explanation:

1. Brake System Vacuum Pumps:

– Vacuum Boosters: Roots vacuum pumps are commonly used as vacuum boosters in automotive brake systems. They assist in enhancing the braking performance by providing the necessary vacuum for power brake operation. When the driver applies the brake pedal, the vacuum booster uses the suction power generated by the Roots pump to amplify the force applied to the brake master cylinder, resulting in more effective braking.

– Electric Brake Vacuum Pumps: In modern electric or hybrid vehicles, where traditional engine-driven vacuum sources may not be available, electric brake vacuum pumps are utilized. These pumps, often based on the Roots principle, generate vacuum independently to power the brake booster and ensure reliable braking performance.

2. Emissions Control:

– Evaporative Emission Control: Roots vacuum pumps are employed in evaporative emission control systems to prevent the release of harmful vapors from the fuel system into the atmosphere. These pumps create a vacuum within the system, purging and storing fuel vapors in a canister for subsequent combustion or recycling.

– Positive Crankcase Ventilation (PCV): PCV systems, which are designed to reduce emissions and maintain the integrity of the engine, also utilize Roots vacuum pumps. These pumps draw crankcase gases and vapors, including oil mist, from the engine’s crankcase into the intake manifold for combustion, improving overall engine efficiency and reducing pollution.

3. Engine Testing and Development:

– Vacuum Leakage Testing: Roots vacuum pumps are utilized for vacuum leakage testing in engine manufacturing and development. By creating a vacuum in the intake manifold or other engine components, these pumps enable the detection of leaks and ensure the integrity of the engine’s air delivery system.

– Air Flow Calibration: During engine testing and calibration, Roots vacuum pumps are used to simulate various operating conditions by controlling the intake air flow. This allows engineers to fine-tune the engine’s performance, optimize fuel-air mixture ratios, and assess the engine’s efficiency and emissions characteristics.

4. HVAC Systems:

– Climate Control: Roots vacuum pumps are employed in automotive HVAC (Heating, Ventilation, and Air Conditioning) systems to facilitate the flow and distribution of air. These pumps help regulate the operation of HVAC components, such as air blend doors and vacuum actuators, ensuring proper air temperature and direction control inside the vehicle cabin.

5. Fuel System and Turbocharging:

– Fuel Transfer and Evacuation: In automotive fuel systems, Roots vacuum pumps are used for fuel transfer and evacuation. These pumps assist in priming the fuel system, removing air pockets, and ensuring the continuous flow of fuel to the engine, enhancing the overall fuel delivery performance.

– Turbocharger Control: Roots vacuum pumps are sometimes employed in turbocharged engines to control the actuation of variable geometry turbochargers (VGT). These pumps provide the necessary vacuum signals to actuate the VGT mechanism, optimizing turbocharger performance and enhancing engine efficiency.

6. Other Applications:

– Electric Vehicle Battery Systems: In electric vehicles, Roots vacuum pumps are utilized to create a vacuum in battery enclosures, helping to maintain the integrity and safety of the battery system by preventing the ingress of moisture, dust, or contaminants.

– Engine Air Induction: Some automotive engines utilize Roots-type superchargers or twin-screw superchargers, which are essentially positive displacement Roots vacuum pumps operating in reverse. These devices compress and force air into the engine’s intake manifold, resulting in increased engine power and performance.

In summary, Roots vacuum pumps find extensive utilization in the automotive industry. They play a crucial role in brake systems, emissions control, engine testing and development, HVAC systems, fuel systems, turbocharging, electric vehicle battery systems, and engine air induction. By contributing to braking performance, emissions reduction, engine calibration, HVAC functionality, fuel system efficiency, turbocharger control, battery system safety, and engine power enhancement, Roots vacuum pumps contribute significantly to the overall operation and performance of automotive systems and components.

roots vacuum pump

What Are the Advantages of Using Roots Vacuum Pumps?

Roots vacuum pumps, also known as Roots blowers or rotary lobe pumps, offer several advantages that make them a popular choice for various industrial applications. Here’s a detailed explanation of the advantages of using Roots vacuum pumps:

1. High Pumping Speed: Roots vacuum pumps are known for their high pumping speed, which refers to the rate at which they can remove gas from a vacuum system. The unique design of synchronized rotating lobes enables these pumps to handle large volumes of gas efficiently. This high pumping speed makes Roots vacuum pumps well-suited for applications that require rapid evacuation or continuous extraction of gases.

2. Large Gas Handling Capacity: Roots vacuum pumps have a large gas handling capacity, allowing them to handle a wide range of gases, including clean air, corrosive gases, and vapors. Their robust construction and ability to handle gas with particulates or liquids make them suitable for applications in industries such as chemical processing, pharmaceuticals, food processing, and wastewater treatment.

3. Oil-Free and Contamination-Free Operation: One of the significant advantages of Roots vacuum pumps is that they operate without the need for lubrication. The non-contacting design of the pump eliminates the risk of oil contamination in the vacuum system. This is particularly important in applications where clean, oil-free vacuum environments are required, such as semiconductor manufacturing, electronics, and research laboratories.

4. Reliable and Low Maintenance: Roots vacuum pumps are known for their reliability and low maintenance requirements. Since there is no lubrication or contact between the lobes, there is minimal wear and tear, reducing the need for frequent maintenance or replacement of parts. This results in reduced downtime and lower operating costs for the users.

5. Noise and Vibration Reduction: Roots vacuum pumps are designed to operate with low noise and vibration levels. The precision engineering and balanced rotation of the lobes help minimize noise generation and vibration transmission. This makes Roots vacuum pumps suitable for applications where noise reduction and vibration control are important, such as in laboratories, medical facilities, and residential areas.

6. Wide Range of Vacuum Levels: While Roots vacuum pumps are not capable of achieving high vacuum levels on their own, they can be combined with other vacuum pumps, such as rotary vane pumps or diffusion pumps, to create hybrid or combination pumping systems. This allows them to cover a wide range of vacuum levels, making them versatile and adaptable to different application requirements.

7. Energy Efficiency: Roots vacuum pumps are designed to be energy-efficient, offering a favorable power-to-pumping speed ratio. Their efficient design and minimal internal losses help reduce energy consumption, resulting in lower operating costs for the users. This makes them an economical choice for continuous or high-throughput processes that require significant vacuum power.

8. Versatility and Compatibility: Roots vacuum pumps are compatible with various gases and can be used in a wide range of industrial applications. They find applications in industries such as chemical processing, pharmaceuticals, food processing, automotive, packaging, and environmental technology. Their versatility and compatibility make them suitable for both rough vacuum applications and as part of complex vacuum systems.

In summary, the advantages of using Roots vacuum pumps include high pumping speed, large gas handling capacity, oil-free and contamination-free operation, reliability, low maintenance requirements, noise and vibration reduction, a wide range of vacuum levels, energy efficiency, versatility, and compatibility. These advantages make Roots vacuum pumps a preferred choice for many industrial processes that require efficient and reliable vacuum generation.

China Professional Zj 250/500/1200/2400 Dry Blower Booster High Precision Roots Vacuum Pump   with Great quality China Professional Zj 250/500/1200/2400 Dry Blower Booster High Precision Roots Vacuum Pump   with Great quality
editor by CX 2024-04-12

China Best Sales 18.5kw Roots Air Blower Suction Vacuum Pump wholesaler

Product Description

Description:
High Negative Pressure Three Lobe Roots Vacuum Pump
1) When running, the ultimate vacuum is as high as 50%.
2) The theoretical displacement range is 1000-10500m3/h.
3) It can be used to transport industrial gases and steam.
4) No sliding friction parts, reducing wear.
5) Environmental protection and safe operation
6)No oil mist in the exhaust.
7)It can meet ATEX standard explosion-proof requirements.

Main structure

 

Model Diameter(mm) Pressure range  Vacuum pressure(Kpa) Air flow range (M3/min)
5006 DN100 -10 ~  – 50 Kpa 2.12 ~ 13.64
6008 DN125 -10 ~  – 50 Kpa 3.86 ~ 21.75
7011 DN150 -10 ~  – 50 Kpa 9.56~33.20
8016 DN200 -10 ~  – 50 Kpa 12.80~ 49.65

       
Blower Main Parts Materials

  Casing Cast iron HT 200
 Rotor (Impeller &shaft) QT 500
Gear 20CrMnTi 
Bearing Japanese NSK
Oil seal USA CR
Oil tank Double Oil Tanks, Clean Site

Impeller CNC machining center

Working shop
 

Application pictures

*** After running more than 1 year , there are very clean on site , no oil leakage

Packing & delivery
Our wooden case is with fumigation sign, It is Moisture-proof

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Type: Materials Vacuum Conveying
Usage: Industrial, Agriculture, Hospital, Special Gas Pressurized Conveying
Material: Casting Iron Ht200
Application: Sewage and Waste Water Treatment
Customization:
Available

|

roots vacuum pump

How Are Roots Vacuum Pumps Utilized in the Automotive Industry?

Roots vacuum pumps play a significant role in various applications within the automotive industry. Here’s a detailed explanation:

1. Brake System Vacuum Pumps:

– Vacuum Boosters: Roots vacuum pumps are commonly used as vacuum boosters in automotive brake systems. They assist in enhancing the braking performance by providing the necessary vacuum for power brake operation. When the driver applies the brake pedal, the vacuum booster uses the suction power generated by the Roots pump to amplify the force applied to the brake master cylinder, resulting in more effective braking.

– Electric Brake Vacuum Pumps: In modern electric or hybrid vehicles, where traditional engine-driven vacuum sources may not be available, electric brake vacuum pumps are utilized. These pumps, often based on the Roots principle, generate vacuum independently to power the brake booster and ensure reliable braking performance.

2. Emissions Control:

– Evaporative Emission Control: Roots vacuum pumps are employed in evaporative emission control systems to prevent the release of harmful vapors from the fuel system into the atmosphere. These pumps create a vacuum within the system, purging and storing fuel vapors in a canister for subsequent combustion or recycling.

– Positive Crankcase Ventilation (PCV): PCV systems, which are designed to reduce emissions and maintain the integrity of the engine, also utilize Roots vacuum pumps. These pumps draw crankcase gases and vapors, including oil mist, from the engine’s crankcase into the intake manifold for combustion, improving overall engine efficiency and reducing pollution.

3. Engine Testing and Development:

– Vacuum Leakage Testing: Roots vacuum pumps are utilized for vacuum leakage testing in engine manufacturing and development. By creating a vacuum in the intake manifold or other engine components, these pumps enable the detection of leaks and ensure the integrity of the engine’s air delivery system.

– Air Flow Calibration: During engine testing and calibration, Roots vacuum pumps are used to simulate various operating conditions by controlling the intake air flow. This allows engineers to fine-tune the engine’s performance, optimize fuel-air mixture ratios, and assess the engine’s efficiency and emissions characteristics.

4. HVAC Systems:

– Climate Control: Roots vacuum pumps are employed in automotive HVAC (Heating, Ventilation, and Air Conditioning) systems to facilitate the flow and distribution of air. These pumps help regulate the operation of HVAC components, such as air blend doors and vacuum actuators, ensuring proper air temperature and direction control inside the vehicle cabin.

5. Fuel System and Turbocharging:

– Fuel Transfer and Evacuation: In automotive fuel systems, Roots vacuum pumps are used for fuel transfer and evacuation. These pumps assist in priming the fuel system, removing air pockets, and ensuring the continuous flow of fuel to the engine, enhancing the overall fuel delivery performance.

– Turbocharger Control: Roots vacuum pumps are sometimes employed in turbocharged engines to control the actuation of variable geometry turbochargers (VGT). These pumps provide the necessary vacuum signals to actuate the VGT mechanism, optimizing turbocharger performance and enhancing engine efficiency.

6. Other Applications:

– Electric Vehicle Battery Systems: In electric vehicles, Roots vacuum pumps are utilized to create a vacuum in battery enclosures, helping to maintain the integrity and safety of the battery system by preventing the ingress of moisture, dust, or contaminants.

– Engine Air Induction: Some automotive engines utilize Roots-type superchargers or twin-screw superchargers, which are essentially positive displacement Roots vacuum pumps operating in reverse. These devices compress and force air into the engine’s intake manifold, resulting in increased engine power and performance.

In summary, Roots vacuum pumps find extensive utilization in the automotive industry. They play a crucial role in brake systems, emissions control, engine testing and development, HVAC systems, fuel systems, turbocharging, electric vehicle battery systems, and engine air induction. By contributing to braking performance, emissions reduction, engine calibration, HVAC functionality, fuel system efficiency, turbocharger control, battery system safety, and engine power enhancement, Roots vacuum pumps contribute significantly to the overall operation and performance of automotive systems and components.

roots vacuum pump

What Is a Roots Vacuum Pump, and How Does It Work?

A Roots vacuum pump, also known as a Roots blower or a rotary lobe pump, is a type of positive displacement vacuum pump that is widely used for various industrial applications. Here’s a detailed explanation of what a Roots vacuum pump is and how it works:

A Roots vacuum pump consists of two synchronized rotors, known as lobes or impellers, that rotate in opposite directions within a housing. The lobes have a unique helical shape with multiple lobes, which allows them to trap and move gas efficiently. The rotors are synchronized with the help of timing gears to maintain precise clearances between the lobes and the housing.

The operation of a Roots vacuum pump can be described in the following steps:

1. Inlet Stage: The process begins with the lobes rotating in opposite directions. As the lobes rotate, the volume between them and the housing gradually increases, creating a larger space at the inlet side of the pump. This expansion of the volume causes the gas to enter the pump through the inlet port. The gas is drawn in due to the pressure difference between the inlet and the pump’s internal chamber.

2. Compression Stage: As the gas enters the pump, it gets trapped in the spaces between the lobes and the housing. As the lobes continue to rotate, the trapped gas gets carried along the rotating lobes. The gas is essentially trapped in the pockets formed by the lobes and the housing. The rotating lobes then compress the gas as they move towards the outlet side of the pump.

3. Outlet Stage: As the lobes approach the outlet side of the pump, the volume between them and the housing decreases, resulting in the compression of the trapped gas. This compression raises the pressure of the gas, causing it to be expelled through the outlet port of the pump. The expelled gas is then discharged into the atmosphere or directed to a downstream process or another vacuum pump, depending on the application.

It’s important to note that a Roots vacuum pump operates as a non-contacting pump, meaning that there is no physical contact between the lobes or between the lobes and the housing. This characteristic eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system.

Roots vacuum pumps are known for their high pumping speed and ability to handle large volumes of gas. However, they are not capable of achieving high vacuum levels on their own. To achieve higher vacuum levels, a Roots pump is often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in a hybrid or combination pumping system.

In summary, a Roots vacuum pump operates based on the principle of positive displacement. It utilizes synchronized rotating lobes to trap and compress gas, allowing it to be discharged at a higher pressure. The non-contacting design of the pump eliminates the need for lubrication and reduces the risk of contamination. Roots vacuum pumps are commonly employed in various industrial applications, especially when high pumping speed and large gas handling capacity are required.

China Best Sales 18.5kw Roots Air Blower Suction Vacuum Pump   wholesaler China Best Sales 18.5kw Roots Air Blower Suction Vacuum Pump   wholesaler
editor by CX 2024-04-10

China best 18.5kw Roots Air Blower Suction Vacuum Pump with high quality

Product Description

Description:
High Negative Pressure Three Lobe Roots Vacuum Pump
1) When running, the ultimate vacuum is as high as 50%.
2) The theoretical displacement range is 1000-10500m3/h.
3) It can be used to transport industrial gases and steam.
4) No sliding friction parts, reducing wear.
5) Environmental protection and safe operation
6)No oil mist in the exhaust.
7)It can meet ATEX standard explosion-proof requirements.

Main structure

 

Model Diameter(mm) Pressure range  Vacuum pressure(Kpa) Air flow range (M3/min)
5006 DN100 -10 ~  – 50 Kpa 2.12 ~ 13.64
6008 DN125 -10 ~  – 50 Kpa 3.86 ~ 21.75
7011 DN150 -10 ~  – 50 Kpa 9.56~33.20
8016 DN200 -10 ~  – 50 Kpa 12.80~ 49.65

       
Blower Main Parts Materials

  Casing Cast iron HT 200
 Rotor (Impeller &shaft) QT 500
Gear 20CrMnTi 
Bearing Japanese NSK
Oil seal USA CR
Oil tank Double Oil Tanks, Clean Site

Impeller CNC machining center

Working shop
 

Application pictures

*** After running more than 1 year , there are very clean on site , no oil leakage

Packing & delivery
Our wooden case is with fumigation sign, It is Moisture-proof

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Type: Materials Vacuum Conveying
Usage: Industrial, Agriculture, Hospital, Special Gas Pressurized Conveying
Material: Casting Iron Ht200
Application: Sewage and Waste Water Treatment
Customization:
Available

|

roots vacuum pump

How Do Roots Vacuum Pumps Affect the Efficiency of Vacuum Systems in Various Industries?

Roots vacuum pumps have a significant impact on the efficiency of vacuum systems across various industries. Here’s a detailed explanation:

1. Enhanced Vacuum Level:

– High Pumping Speed: Roots vacuum pumps are known for their high pumping speed, which refers to the rate at which they can evacuate gas from a system. By quickly removing gas molecules, these pumps help achieve and maintain a lower pressure, resulting in an enhanced vacuum level within the system. This increased vacuum level is crucial in industries such as semiconductor manufacturing, where precise control of pressure is necessary for optimal processing conditions.

– Improved Evacuation Time: With their rapid gas pumping capability, Roots vacuum pumps significantly reduce the evacuation time required to reach the desired vacuum level. This efficiency is particularly important in industries where time-sensitive processes are involved, such as vacuum drying, degassing, or impregnation, allowing for faster production cycles and increased productivity.

2. Increased Throughput:

– Continuous Operation: Roots vacuum pumps are designed for continuous operation, enabling uninterrupted gas removal from the vacuum system. Their robust construction and oil-free operation make them reliable and suitable for demanding industrial applications. The ability to maintain a consistent vacuum level without frequent stops or downtime contributes to increased system throughput and overall efficiency.

– Handling Large Volumes: Roots pumps are capable of handling large gas volumes due to their displacement principle. This makes them well-suited for industries that require the evacuation of substantial amounts of gas, such as in chemical processing, pharmaceutical manufacturing, or vacuum packaging. By efficiently evacuating large volumes of gas, Roots vacuum pumps facilitate higher production rates and improved process efficiency.

3. Improved Process Control:

– Stable Vacuum Level: Roots vacuum pumps help maintain a stable vacuum level within the system, which is essential for precise process control. By swiftly removing gas molecules, these pumps prevent pressure fluctuations and ensure a consistent environment for various manufacturing processes. This is particularly crucial in industries like thin film deposition, where maintaining a stable vacuum is crucial for achieving uniform coating thickness and quality.

– Reduced Contamination: Roots vacuum pumps operate without lubricating oil in the pumping chamber, minimizing the risk of oil contamination in the vacuum system. This is particularly advantageous in industries such as electronics, semiconductor fabrication, or research laboratories, where even trace amounts of contaminants can adversely affect product quality or experimental results. By providing clean and oil-free vacuum, Roots pumps contribute to improved process control, reduced yield loss, and enhanced product reliability.

4. Energy Efficiency:

– Lower Power Consumption: Roots vacuum pumps are designed to operate efficiently, consuming lower power compared to other types of vacuum pumps. This energy efficiency is beneficial in industries where vacuum systems are continuously operated, such as in chemical processing plants or industrial manufacturing facilities. By reducing power consumption, Roots pumps help lower operational costs and contribute to sustainable and environmentally friendly practices.

– Heat Dissipation: Roots pumps generate less heat during operation compared to certain other vacuum pump types. This is advantageous in industries where temperature control is critical, such as in semiconductor fabrication or vacuum furnaces. The reduced heat generation minimizes the need for additional cooling measures, improving overall energy efficiency and reducing operational costs.

In summary, Roots vacuum pumps significantly impact the efficiency of vacuum systems in various industries. They enhance the vacuum level, increase system throughput, improve process control, and contribute to energy savings. By providing high pumping speed, quick evacuation time, continuous operation, stable vacuum levels, reduced contamination risk, lower power consumption, and efficient heat dissipation, Roots vacuum pumps play a crucial role in optimizing the performance and productivity of vacuum systems across industries.

roots vacuum pump

What Is a Roots Vacuum Pump, and How Does It Work?

A Roots vacuum pump, also known as a Roots blower or a rotary lobe pump, is a type of positive displacement vacuum pump that is widely used for various industrial applications. Here’s a detailed explanation of what a Roots vacuum pump is and how it works:

A Roots vacuum pump consists of two synchronized rotors, known as lobes or impellers, that rotate in opposite directions within a housing. The lobes have a unique helical shape with multiple lobes, which allows them to trap and move gas efficiently. The rotors are synchronized with the help of timing gears to maintain precise clearances between the lobes and the housing.

The operation of a Roots vacuum pump can be described in the following steps:

1. Inlet Stage: The process begins with the lobes rotating in opposite directions. As the lobes rotate, the volume between them and the housing gradually increases, creating a larger space at the inlet side of the pump. This expansion of the volume causes the gas to enter the pump through the inlet port. The gas is drawn in due to the pressure difference between the inlet and the pump’s internal chamber.

2. Compression Stage: As the gas enters the pump, it gets trapped in the spaces between the lobes and the housing. As the lobes continue to rotate, the trapped gas gets carried along the rotating lobes. The gas is essentially trapped in the pockets formed by the lobes and the housing. The rotating lobes then compress the gas as they move towards the outlet side of the pump.

3. Outlet Stage: As the lobes approach the outlet side of the pump, the volume between them and the housing decreases, resulting in the compression of the trapped gas. This compression raises the pressure of the gas, causing it to be expelled through the outlet port of the pump. The expelled gas is then discharged into the atmosphere or directed to a downstream process or another vacuum pump, depending on the application.

It’s important to note that a Roots vacuum pump operates as a non-contacting pump, meaning that there is no physical contact between the lobes or between the lobes and the housing. This characteristic eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system.

Roots vacuum pumps are known for their high pumping speed and ability to handle large volumes of gas. However, they are not capable of achieving high vacuum levels on their own. To achieve higher vacuum levels, a Roots pump is often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in a hybrid or combination pumping system.

In summary, a Roots vacuum pump operates based on the principle of positive displacement. It utilizes synchronized rotating lobes to trap and compress gas, allowing it to be discharged at a higher pressure. The non-contacting design of the pump eliminates the need for lubrication and reduces the risk of contamination. Roots vacuum pumps are commonly employed in various industrial applications, especially when high pumping speed and large gas handling capacity are required.

China best 18.5kw Roots Air Blower Suction Vacuum Pump   with high quality China best 18.5kw Roots Air Blower Suction Vacuum Pump   with high quality
editor by CX 2024-04-10

China factory Air Cooling Type Roots Blower Vacuum Pump vacuum pump diy

Product Description

Description:
High Negative Pressure Three Lobe Roots Vacuum Pump
1) When running, the ultimate vacuum is as high as 50%.
2) The theoretical displacement range is 1000-10500m3/h.
3) It can be used to transport industrial gases and steam.
4) No sliding friction parts, reducing wear.
5) Environmental protection and safe operation
6)No oil mist in the exhaust.
7)It can meet ATEX standard explosion-proof requirements.

Main structure

 

Model Diameter(mm) Pressure range  Vacuum pressure(Kpa) Air flow range (M3/min)
5006 DN100 -10 ~  – 50 Kpa 2.12 ~ 13.64
6008 DN125 -10 ~  – 50 Kpa 3.86 ~ 21.75
7011 DN150 -10 ~  – 50 Kpa 9.56~33.20
8016 DN200 -10 ~  – 50 Kpa 12.80~ 49.65

       
Blower Main Parts Materials

  Casing Cast iron HT 200
 Rotor (Impeller &shaft) QT 500
Gear 20CrMnTi 
Bearing Japanese NSK
Oil seal USA CR
Oil tank Double Oil Tanks, Clean Site

Impeller CNC machining center

Working shop
 

Application pictures

*** After running more than 1 year , there are very clean on site , no oil leakage

Packing & delivery
Our wooden case is with fumigation sign, It is Moisture-proof

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Type: Materials Vacuum Conveying
Usage: Industrial, Agriculture, Hospital, Special Gas Pressurized Conveying
Material: Casting Iron Ht200
Application: Sewage and Waste Water Treatment
Customization:
Available

|

Vacuum Pump

Basic knowledge of vacuum pump

A vacuum pump is used to create a relative vacuum within a sealed volume. These pumps take gas molecules out of the sealed volume and expel them, leaving a partial vacuum. They can be used in a variety of applications, including medicine and laboratory research. This article will cover the basics of vacuum pumps, including how they operate and the materials they use. You will also learn about typical applications and fees.

How it works

A vacuum pump is a pump that removes air from a specific space. These pumps are divided into three types according to their function. Positive displacement pumps are used in the low vacuum range and high vacuum pumps are used in the ultra-high vacuum range. The performance of a vacuum pump depends on the quality of the vacuum it produces.
A vacuum pump creates a partial vacuum above the surrounding atmospheric pressure. The speed of the pump is proportional to the pressure difference between the ambient atmosphere and the base pressure of the pump. Choose a base pressure for a specific process, not the lowest possible pressure in the system.
A scroll pump is also a type of vacuum pump. This type of pump consists of two scrolls, the inner scroll running around the gas volume. It then compresses the gas in a spiral fashion until it reaches the maximum pressure at its center. The inner and outer scrolls are separated by a polymer tip seal that provides an axial seal between them. Its pumping speed ranges from 5.0 to 46 m3/h.
Another type of vacuum pump is the screw pump, which uses two rotating screws in one chamber. The screw in the screw pump is a left-handed screw, and the other is a right-handed screw. The two screws do not touch each other when engaged, preventing contamination of the medium. They also feature high pumping speeds, low operating costs and low maintenance requirements.
The vacuum pump consists of several parts such as rotor and base. These components create an area of ​​low pressure. Gas and water molecules rush into this low pressure area, where they are sucked into the pump. The pump also rotates, preventing fluid leakage to the low pressure side.
The main function of a vacuum pump is to remove gas particles from an enclosed space. It does this by changing gas molecules between high and low pressure states. A vacuum pump can also generate a partial vacuum. There are several types of vacuum pumps, each designed to perform a specific function, so it is important to choose the right type for your application.

Vacuum Pump Materials

There are two main materials used in vacuum pumps: metal and polyethylene. Metal is more durable, while polyethylene is cheaper and more flexible. However, these materials are not suitable for high pressure and may cause damage. Therefore, if you want to design a high-pressure pump, it is best to use metal materials.
Vacuum pumps are required in a variety of industrial environments and manufacturing processes. The most common vacuum pump is a positive displacement vacuum pump, which transports a gas load from the inlet to the outlet. The main disadvantage of this pump is that it can only generate a partial vacuum; higher vacuums must be achieved through other techniques.
Materials used in vacuum pumps vary from high to rough vacuum pumps. Low pressure ranges are typically below 1 x 10-3 mbar, but high vacuum pumps are used for extreme vacuum. They also differ in manufacturing tolerances, seals used, materials used and operating conditions.
The choice of vacuum pump material depends on the process. The vacuum range and ultimate pressure of the system must be carefully analyzed to find the right material for the job. Depending on the purpose of the pump, a variety of materials can be used, from ceramic to plastic substrates. When choosing a vacuum pump material, be sure to consider its durability and corrosion resistance.
Dry and wet vacuum pumps use oil to lubricate internal parts. This prevents wear of the pump due to corrosion. These types of pumps are also recommended for continuous use and are ideal for applications where the gas is acidic or corrosive. Therefore, they are widely used in the chemical and food industries. They are also used in rotary evaporation and volatile compound processing.
Positive displacement pumps are the most common type. They work by letting gas flow into a cavity and venting it into the atmosphere. Additionally, momentum transfer pumps, also known as molecular pumps, use high-velocity jets of high-density fluids to transport air and gases. These pumps are also used for medical purposes.

Typical application

Vacuum pumps are used to remove large amounts of air and water from the process. They are used in various industries to improve performance. For example, liquid ring vacuum pumps are used in packaging production to produce plastic sheets in the desired shape and size. Large-capacity suction pumps are used in the chemical industry to improve the surface properties of materials and speed up filtration.
There are two basic principles of vacuum pumps: entrapment and gas transfer. Positive displacement pumps are suitable for low to medium vacuums, while momentum transfer and retention pumps are suitable for high vacuums. Typically, high vacuum systems use two or more pumps working in series.
There are three main categories of vacuum pumps: primary, booster, and secondary. Their working pressure ranges from a few millimeters above atmospheric pressure. They also have several different technologies, including positive displacement, gas transfer, and gas capture. These pumps transport gas molecules through momentum exchange. Typically, they release gas molecules at roughly the same rate as they entered. When the process is complete, the gas molecules are slightly above atmospheric pressure. The discharge pressure is equal to the lowest pressure achieved, which is the compression ratio.
Vacuum pumps are widely used in all walks of life. They can be found in almost every industrial sector, including food processing. For example, they are used to make sausages and food products. In addition, they are used in landfill and digester compressors. They can also be used to build solar panels.
Oil lubricated vacuum pumps are currently the most energy-efficient vacuum pumps. These pumps are suitable for a variety of industrial applications including freeze drying and process engineering. These pumps use oil as a sealant and coolant, which makes them ideal for a variety of applications. These pumps are also very sensitive to vibration.
Another type of vacuum pump is a turbomolecular pump. These pumps have multiple stages and angled vanes. Unlike mechanical pumps, turbomolecular pumps sweep out larger areas at higher pumping speeds. In addition, they can generate ultra-high oil-free vacuums. Additionally, they have no moving parts, which makes them ideal for high vacuum pressures.
Vacuum Pump

Vacuum Pump Cost

Annual maintenance costs for vacuum pumps range from $242 to $337. The energy consumption of the vacuum pump is also a consideration, as it consumes electricity throughout its operating cycle. For example, an electric motor for a 1 hp pump uses 0.55 kW/hr, which equates to 2,200 kWh of energy per year.
Energy cost is the largest part of the total cost of a vacuum pump. They are usually four to five times higher than the initial purchase price. Therefore, choosing a more energy efficient system can reduce the total cost of ownership and extend the payback period. For many clients, this can be millions of dollars.
A vacuum pump works by compressing gas as it enters a chamber. This pushes the gas molecules towards the exhaust. The exhaust gas is then vented to the atmosphere. A special spring-loaded vane seals the pump’s chamber, creating an airtight seal. Specially formulated oils are also used to lubricate, cool and seal rotors.
Vacuum pumps are not cheap, but they have many advantages over water suction. One of the main advantages of vacuum pumps is their flexibility and reliability. This is an industry-proven solution that has been around for years. However, the initial cost of a vacuum pump is higher than that of a water aspirator.
If the vacuum pump fails unexpectedly, replacement costs can be high. Proper maintenance can extend the life of your system and prevent unplanned downtime. However, no one can predict when a pump will fail, and if a pump does fail, the cost can far exceed the cost of buying a new pump. Therefore, investing in preventive maintenance is a wise investment.
There are many types of vacuum pumps, not all of which are suitable for the same type of application. Make sure to choose a pump with the power required for the job. It should also be able to handle a variety of samples.

China factory Air Cooling Type Roots Blower Vacuum Pump   vacuum pump diyChina factory Air Cooling Type Roots Blower Vacuum Pump   vacuum pump diy
editor by CX 2024-04-02

China OEM Roots Blower Compressor Vacuum Pump DN150 vacuum pump design

Product Description

Negative pressure centralized feeding material air blower

1) The feeding air blower has dual functions of blowing and sucking.
One machine can be used for both suction and blowing;

2)  It runs without oil, and the output air is clean; compared with centrifugal blower and medium-pressure blower, its pressure is higher than them, often more 10 times than the centrifugal blower;  The feeding air blower cylinder body is integrally cast, using shockproof mounting feet, it has low requirements for the installation foundation and saves installation costs and cycles.
The negative pressure centralized feeding air blower is a dust-free airtight pipeline conveying equipment that uses the vacuum suction of a high-pressure blower to convey particles and powdery materials. It uses the air pressure difference between the vacuum and the environmental space to form gas flow in the pipeline and drive the movement of powdery materials. , so it complete the powder transportation

Main structure

 

Model Diameter(mm) Pressure range  Vacuum pressure(Kpa) Air flow range (M3/min)
5006 DN100 -10 ~  – 50 Kpa 2.12 ~ 13.64
6008 DN125 -10 ~  – 50 Kpa 3.86 ~ 21.75
7011 DN150 -10 ~  – 50 Kpa 9.56~33.20
8016 DN200 -10 ~  – 50 Kpa 12.80~ 49.65

       
Blower Main Parts Materials

  Casing Cast iron HT 200
 Rotor (Impeller &shaft) QT 500
Gear 20CrMnTi 
Bearing Japanese NSK
Oil seal USA CR
Oil tank Double Oil Tanks, Clean Site

Impeller CNC machining center

Working shop
 

Application pictures

*** After running more than 1 year , there are very clean on site , no oil leakage

Packing & delivery
Our wooden case is with fumigation sign, It is Moisture-proof

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Type: Materials Vacuum Conveying
Usage: Industrial, Agriculture, Hospital, Special Gas Pressurized Conveying
Material: Casting Iron Ht200
Application: Sewage and Waste Water Treatment
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used in the Automotive Industry?

Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

vacuum pump

Can Vacuum Pumps Be Used for Chemical Distillation?

Yes, vacuum pumps are commonly used in chemical distillation processes. Here’s a detailed explanation:

Chemical distillation is a technique used to separate or purify components of a mixture based on their different boiling points. The process involves heating the mixture to evaporate the desired component and then condensing the vapor to collect the purified substance. Vacuum pumps play a crucial role in chemical distillation by creating a reduced pressure environment, which lowers the boiling points of the components and enables distillation at lower temperatures.

Here are some key aspects of using vacuum pumps in chemical distillation:

1. Reduced Pressure: By creating a vacuum or low-pressure environment in the distillation apparatus, vacuum pumps lower the pressure inside the system. This reduction in pressure lowers the boiling points of the components, allowing distillation to occur at temperatures lower than their normal boiling points. This is particularly useful for heat-sensitive or high-boiling-point compounds that would decompose or become thermally degraded at higher temperatures.

2. Increased Boiling Point Separation: Vacuum distillation increases the separation between the boiling points of the components, making it easier to achieve a higher degree of purification. In regular atmospheric distillation, the boiling points of some components may overlap, leading to less effective separation. By operating under vacuum, the boiling points of the components are further apart, improving the selectivity and efficiency of the distillation process.

3. Energy Efficiency: Vacuum distillation can be more energy-efficient compared to distillation under atmospheric conditions. The reduced pressure lowers the required temperature for distillation, resulting in reduced energy consumption and lower operating costs. This is particularly advantageous when dealing with large-scale distillation processes or when distilling heat-sensitive compounds that require careful temperature control.

4. Types of Vacuum Pumps: Different types of vacuum pumps can be used in chemical distillation depending on the specific requirements of the process. Some commonly used vacuum pump types include:

– Rotary Vane Pumps: Rotary vane pumps are widely used in chemical distillation due to their ability to achieve moderate vacuum levels and handle various gases. They work by using rotating vanes to create chambers that expand and contract, enabling the pumping of gas or vapor.

– Diaphragm Pumps: Diaphragm pumps are suitable for smaller-scale distillation processes. They use a flexible diaphragm that moves up and down to create a vacuum and compress the gas or vapor. Diaphragm pumps are often oil-free, making them suitable for applications where avoiding oil contamination is essential.

– Liquid Ring Pumps: Liquid ring pumps can handle more demanding distillation processes and corrosive gases. They rely on a rotating liquid ring to create a seal and compress the gas or vapor. Liquid ring pumps are commonly used in chemical and petrochemical industries.

– Dry Screw Pumps: Dry screw pumps are suitable for high-vacuum distillation processes. They use intermeshing screws to compress and transport gas or vapor. Dry screw pumps are known for their high pumping speeds, low noise levels, and oil-free operation.

Overall, vacuum pumps are integral to chemical distillation processes as they create the necessary reduced pressure environment that enables distillation at lower temperatures. By using vacuum pumps, it is possible to achieve better separation, improve energy efficiency, and handle heat-sensitive compounds effectively. The choice of vacuum pump depends on factors such as the required vacuum level, the scale of the distillation process, and the nature of the compounds being distilled.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China OEM Roots Blower Compressor Vacuum Pump DN150   vacuum pump design		China OEM Roots Blower Compressor Vacuum Pump DN150   vacuum pump design
editor by CX 2024-03-29

China supplier Ruvac Wau Roots Vacuum Pumps Ruvac Wa /Wau Roots Blower Booster Vacuum Pump supplier

Product Description

Product Description

RUVAC WAU Roots Pumps are used to increase the pumping speed at low pressures, extending the operating pressure range of the fore pumps. The WAU Roots vacuum pumps use air cooled, flange-mounted standard 3 phase motors. The WAU Roots vacuum pumps are provided with an additional integrated pressure equalization line.

RUVAC WA /WAU roots blower are secondary pumps equipped with flange-mounted air-cooled standard 3 phase motors for flexibility and are excellent for atmospheric pump down applications owing to its integrated equalization line and the bypass valve.

RUVAC WA / WAU roots blowers are equipped with radial shaft sealing rings made of FPM (FKM) (fluor polymer) for longer service intervals. RUVAC WAU roots blowers have an additional integrated pressure equalization line and a differential pressure bypass valve. These blowers are supplied with a vertical pumping flow as a standard but can be changed to horizontal flow if required.

RUVAC WA / WAU being dry roots blowers are environmentally friendly as well as air cooled saving costly water usage/disposal as well as water circuit maintenance costs. RUVAC WA / WAU have proven reliability and performance in many applications such as heat treatment, food packaging, and CHINAMFG drying.
 

Detailed Photos

 

Product Parameters

 

 

 

Application Ranges:
 

   * VacHeat treatment
   * Furnaces
   * Metallurgy
   * Vacuum coating
   * Chemistry
   * Packaging
   * Central vacuum supply systems
   * CHINAMFG drying
   * Electrical engineering
   * Mechanical engineering
   * Automotive industry

Features

1. This vacuum pump gives the maximum vacuum degree of less than 0.5mbar.

2. The vapor is ejected at high velocity.

3. It generates low noise while operating and the signal to noise ratio is lower than 67db.

4. Our product is eco-friendly. It is applied with an oil fog clearer, so there is no oil fog existing in exhaust air.

5. Coming with compact structure as well as scientific and reasonable design, our pump is easy to be installed in the industry system.
 

In Stocks

On-site Projects

Certifications

 

Company Profile

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online, Video, Call, Email Supports or on-Site
Warranty: 1 Year
Oil or Not: Oil
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

roots vacuum pump

What Are the Differences Between Dry and Wet Roots Vacuum Pumps?

Dry and wet Roots vacuum pumps are two different types of pumps with distinct operating principles and characteristics. Here’s a detailed explanation of their differences:

1. Operating Principle:

– Dry Roots Vacuum Pump: A dry Roots vacuum pump operates without the use of any lubricating fluid or sealing liquid. It consists of two or more intermeshing lobed rotors that rotate in opposite directions, creating a series of expanding and contracting chambers. As the rotors rotate, gas is trapped in the chambers and carried from the inlet to the outlet, resulting in the generation of a vacuum.

– Wet Roots Vacuum Pump: A wet Roots vacuum pump, also known as a liquid ring pump, uses a liquid, typically water or another compatible liquid, as a sealing and working fluid. The liquid forms a rotating ring inside the pump, creating a seal between the lobes of the rotors. As the rotors turn, the liquid ring traps and carries the gas from the inlet to the outlet, creating a vacuum.

2. Lubrication and Sealing:

– Dry Roots Vacuum Pump: Dry Roots pumps do not require lubrication or sealing fluid. The absence of liquids eliminates the need for maintenance associated with fluid handling, such as oil changes or water management. Dry pumps are often preferred in applications where contamination from lubricants or sealing fluids is a concern, such as in semiconductor manufacturing or pharmaceutical industries.

– Wet Roots Vacuum Pump: Wet Roots pumps rely on a liquid seal for operation, requiring a continuous supply of sealing liquid, typically water. The liquid serves as both a sealant and a coolant for the pump. However, it also necessitates careful management of the liquid, including water supply, disposal, and potential contamination risks. Wet pumps are commonly used in applications where the presence of the sealing liquid is not a concern or can be easily managed.

3. Operation Efficiency:

– Dry Roots Vacuum Pump: Dry pumps are known for their high operational efficiency. They can achieve high pumping speeds and create substantial vacuum levels. Dry pumps are particularly suitable for processes that require quick pump-down times or applications where a deep vacuum is necessary.

– Wet Roots Vacuum Pump: Wet pumps typically have lower pumping speeds compared to dry pumps. While they can achieve moderate vacuum levels, they are not as effective in creating deep vacuums. Wet pumps are often used in processes where the pumping speed requirements are not as demanding, or in applications where the presence of the sealing liquid can provide benefits, such as in handling condensable gases or preventing contamination.

4. Application Suitability:

– Dry Roots Vacuum Pump: Dry pumps are commonly used in a wide range of applications, including semiconductor manufacturing, analytical instruments, vacuum packaging, and industrial processes. Their ability to handle different gases and their high operational efficiency make them suitable for various industries and processes.

– Wet Roots Vacuum Pump: Wet pumps find application in processes where the presence of a sealing liquid is advantageous. They are often used in applications involving the handling of water vapor, condensable gases, or corrosive gases. Wet pumps are utilized in industries such as chemical processing, pharmaceuticals, food processing, and environmental applications.

5. Maintenance and Care:

– Dry Roots Vacuum Pump: Dry pumps generally require less maintenance compared to wet pumps. They do not rely on sealing liquid, reducing the need for fluid changes, disposal, or monitoring of liquid levels. Dry pumps may require periodic maintenance, such as cleaning, inspection, and rotor lubrication, but the maintenance requirements are typically less frequent and less involved.

– Wet Roots Vacuum Pump: Wet pumps require regular maintenance due to the presence of the sealing liquid. Maintenance tasks include monitoring and replenishing the liquid, managing the water supply, and ensuring proper disposal of the used liquid. The sealing liquid may also require filtration or treatment to remove contaminants or prevent scaling or corrosion.

In summary, dry and wet Roots vacuum pumps differ in their operating principles, lubrication and sealing methods, operation efficiency, application suitability, and maintenance requirements. Dry pumps operate without lubrication or sealing fluid, offer high efficiency and are suitable for a wide range of applications. Wet pumps rely on a liquid seal, have lower pumping speeds, are used in applications where the liquid presence is advantageous, and require regular maintenance and care.

roots vacuum pump

What Is a Roots Vacuum Pump, and How Does It Work?

A Roots vacuum pump, also known as a Roots blower or a rotary lobe pump, is a type of positive displacement vacuum pump that is widely used for various industrial applications. Here’s a detailed explanation of what a Roots vacuum pump is and how it works:

A Roots vacuum pump consists of two synchronized rotors, known as lobes or impellers, that rotate in opposite directions within a housing. The lobes have a unique helical shape with multiple lobes, which allows them to trap and move gas efficiently. The rotors are synchronized with the help of timing gears to maintain precise clearances between the lobes and the housing.

The operation of a Roots vacuum pump can be described in the following steps:

1. Inlet Stage: The process begins with the lobes rotating in opposite directions. As the lobes rotate, the volume between them and the housing gradually increases, creating a larger space at the inlet side of the pump. This expansion of the volume causes the gas to enter the pump through the inlet port. The gas is drawn in due to the pressure difference between the inlet and the pump’s internal chamber.

2. Compression Stage: As the gas enters the pump, it gets trapped in the spaces between the lobes and the housing. As the lobes continue to rotate, the trapped gas gets carried along the rotating lobes. The gas is essentially trapped in the pockets formed by the lobes and the housing. The rotating lobes then compress the gas as they move towards the outlet side of the pump.

3. Outlet Stage: As the lobes approach the outlet side of the pump, the volume between them and the housing decreases, resulting in the compression of the trapped gas. This compression raises the pressure of the gas, causing it to be expelled through the outlet port of the pump. The expelled gas is then discharged into the atmosphere or directed to a downstream process or another vacuum pump, depending on the application.

It’s important to note that a Roots vacuum pump operates as a non-contacting pump, meaning that there is no physical contact between the lobes or between the lobes and the housing. This characteristic eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system.

Roots vacuum pumps are known for their high pumping speed and ability to handle large volumes of gas. However, they are not capable of achieving high vacuum levels on their own. To achieve higher vacuum levels, a Roots pump is often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in a hybrid or combination pumping system.

In summary, a Roots vacuum pump operates based on the principle of positive displacement. It utilizes synchronized rotating lobes to trap and compress gas, allowing it to be discharged at a higher pressure. The non-contacting design of the pump eliminates the need for lubrication and reduces the risk of contamination. Roots vacuum pumps are commonly employed in various industrial applications, especially when high pumping speed and large gas handling capacity are required.

China supplier Ruvac Wau Roots Vacuum Pumps Ruvac Wa /Wau Roots Blower Booster Vacuum Pump   supplier China supplier Ruvac Wau Roots Vacuum Pumps Ruvac Wa /Wau Roots Blower Booster Vacuum Pump   supplier
editor by CX 2024-03-29

China factory High Performance Vacuum Pump Roots Blower Pumps With Long Life vacuum pump adapter

Product Description

DS Series Dry Screw Vacuum Pump 

Features

1.Exhaust Path Is Short, Reduce The Deposition Of Reactants.
Comparing with other types of dry vacuum pump,DENAIR screw vacuum pump has the shortest gas path in the vacuum pump and that could reduce the contamination of process gas. Screw rotors can play as a powder transmission mechanism,we runs well even there has lots of contamination inside the pump.

2.The Optimal Linear Sealing, The Pump Performance.
Patented rotor profile can provide rotor excellent sealing effects thus a larger clearance is allowable in between.Pump rotor wesring and rotor jam by the process contamination can be reduced by larger allowable clearcance.

3.Simple Structure, Low Fault Rate And Easy Maintenance
Screw type vacuum is composed by a pair of screw rotor and isolation plates are required in different between rotors and isolation plates can also be avoided.Overhaul CHINAMFG dry pump is much easier than other type of dry pump,so the erpair time is shorter and the cost is saver.

4.Microcomputer Operation, Remote Monitoring, Considerate Protection
Microprocessor controller provides lots of pump parameters for running status monitoring.Pump can be easily operated and monitored by the operation panel.Remote control software can help the customer monitor the pump running status remotely.

DS Vacuum Pump Speed Curve

Advantages

1.Special cooling liquid cooling, to avoid the cooling water may cause corrosion to the hull. 

2.Mobile operation interface, convenient operation; Display and the actual work of vacuum pump and can be selected to both languages, according to the real close to the customer.

3.Catch the power connector, safe and convenient.

4.The nitrogen gas heater, make the vacuum pump is more suitable for CVD, PECVD and other semiconductor technique process.
5.The control signals and communication signal interface, remote monitoring was carried out on the vacuum. 

Application

1.The health care industry.

2.Lighting industry.

3.A variety of analytical instruments.

4.Electronics, semiconductor industry. 

5.The power industry.

6.Refrigeration industry.

Technical Prameters

Type Unit DS180 DS250 DS360 DS540 DS720
50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz
Pumping speed m3/hr 180 216 250 3, China
And our factory is located in No.386,YangzhuangBang Street,Pingxing Rd.,Xindai Town,HangZhou,ZHangZhoug Province, China

Q3: Warranty terms of your machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: /
Vacuum Degree: Vacuum
Work Function: Pre-Suction Pump
Working Conditions: Dry
Customization:
Available

|

roots vacuum pump

How Do You Select the Right Size Roots Vacuum Pump for a Specific Application?

Selecting the right size Roots vacuum pump for a specific application requires careful consideration of various factors. Here’s a detailed explanation:

1. Determine the Required Pumping Speed: The pumping speed is a crucial parameter that indicates the volume flow rate of gas that the Roots vacuum pump can handle. To select the right size pump, you need to determine the required pumping speed for your application. Consider factors such as the volume of the system being evacuated, the gas load, and the desired evacuation time. The required pumping speed will help narrow down the options and identify pumps that can meet your application’s demands.

2. Consider the Ultimate Vacuum Level: The ultimate vacuum level is the lowest pressure that the Roots vacuum pump can achieve under ideal conditions. Different applications have varying vacuum level requirements. Determine the desired ultimate vacuum level for your application, keeping in mind factors such as the sensitivity of the process, the presence of moisture or contaminants, and the specific requirements of the downstream equipment or processes. Ensure that the selected pump can reach the required vacuum level.

3. Evaluate Gas Composition and Characteristics: The composition and characteristics of the gas being pumped are essential considerations. Some gases, such as condensable vapors or corrosive gases, may require special pump features or materials to ensure efficient and safe operation. Consider the gas composition, including its chemical properties, temperature, and any potential challenges it may pose to the pump’s performance or longevity. Consult the pump manufacturer or specialist for guidance on selecting a pump suitable for handling the specific gas or gas mixture in your application.

4. Account for System Constraints and Operating Conditions: Assess the system constraints and operating conditions that may impact the pump’s performance. Factors such as the available space for the pump, power supply requirements, cooling options, and noise limitations should be taken into consideration. Additionally, consider any specific operating conditions such as temperature extremes, high-altitude operation, or continuous-duty requirements. Ensure that the selected pump is compatible with the system constraints and can operate reliably under the anticipated operating conditions.

5. Consult Manufacturer Specifications and Performance Curves: Review the manufacturer’s specifications and performance curves for the Roots vacuum pumps under consideration. These documents provide detailed information about the pump’s capabilities, operating ranges, and performance characteristics. Pay attention to parameters such as pumping speed, ultimate vacuum level, power requirements, and any specific features or limitations. Compare the specifications with your application requirements to identify pumps that align with your needs.

6. Seek Expert Advice: If you are unsure about the pump selection process or have complex application requirements, it is recommended to seek advice from pump manufacturers or specialists. They can provide valuable insights, recommend suitable pump models, and assist in evaluating your specific application needs.

7. Consider Future Expansion and Flexibility: When selecting a Roots vacuum pump, consider the potential for future expansion or changes in your application. If there is a possibility of increased gas load or system requirements in the future, it may be advantageous to select a slightly larger pump to accommodate potential growth and ensure long-term suitability.

In summary, selecting the right size Roots vacuum pump involves determining the required pumping speed, considering the ultimate vacuum level, evaluating gas composition and characteristics, accounting for system constraints and operating conditions, consulting manufacturer specifications, and seeking expert advice when needed. By carefully considering these factors, you can choose a Roots vacuum pump that meets the specific requirements of your application, ensuring efficient and reliable operation.

roots vacuum pump

Are Roots Vacuum Pumps Used in Industrial Applications?

Yes, Roots vacuum pumps are widely used in various industrial applications. Here’s a detailed explanation of their application in industrial settings:

1. Chemical Processing: Roots vacuum pumps find extensive use in the chemical processing industry. They are employed for processes such as vacuum distillation, solvent recovery, drying, and degassing. Their high pumping speed and ability to handle corrosive gases make them suitable for handling various chemical vapors and byproducts.

2. Pharmaceuticals: In the pharmaceutical industry, Roots vacuum pumps are utilized for applications such as vacuum drying, tablet coating, freeze drying, and vacuum packaging. Their oil-free operation ensures a clean and contaminant-free vacuum environment, which is crucial for pharmaceutical manufacturing processes.

3. Food Processing: Roots vacuum pumps play a significant role in the food processing industry. They are employed for vacuum packaging, vacuum cooling, and vacuum drying of food products. The oil-free operation of Roots vacuum pumps ensures food safety and eliminates the risk of contamination.

4. Environmental Technology: Roots vacuum pumps are utilized in environmental technology applications, including wastewater treatment, biogas processing, and air pollution control. They are employed to extract gases, control emissions, and facilitate the treatment and purification of air and water.

5. Semiconductor Manufacturing: In the semiconductor industry, Roots vacuum pumps are used for processes such as ion implantation, physical vapor deposition (PVD), chemical vapor deposition (CVD), and etching. Their high pumping speed and oil-free operation are crucial for maintaining clean vacuum conditions required in semiconductor fabrication.

6. Packaging and Printing: Roots vacuum pumps are employed in packaging and printing applications. They are used for vacuum packaging of products, vacuum forming of packaging materials, and in printing presses for paper handling and ink transfer.

7. Automotive Industry: Roots vacuum pumps find application in the automotive industry for processes such as brake system vacuum assist, crankcase ventilation, and emissions control systems. They help create vacuum conditions required for the operation of various automotive systems.

8. Research and Laboratory: Roots vacuum pumps are utilized in research laboratories and scientific facilities for a wide range of applications. They are used in vacuum ovens, freeze dryers, vacuum filtration, electron microscopy, surface analysis, and other laboratory processes that require controlled vacuum environments.

9. Energy Industry: In the energy sector, Roots vacuum pumps are used for applications such as steam turbine condenser air extraction, transformer drying, and vacuum impregnation of electrical components. They help maintain proper vacuum conditions for efficient and reliable operation of energy systems.

These are just a few examples of the industrial applications where Roots vacuum pumps are commonly used. Their high pumping speed, large gas handling capacity, oil-free operation, reliability, and versatility make them suitable for a wide range of industrial processes that require efficient and reliable vacuum generation.

China factory High Performance Vacuum Pump Roots Blower Pumps With Long Life   vacuum pump adapter	China factory High Performance Vacuum Pump Roots Blower Pumps With Long Life   vacuum pump adapter
editor by CX 2024-03-28

China Standard 1200L/S Zjt-1200 Petrochemical Pharmaceutical Medicine Gas Recovery Tri-Lobe Roots Vacuum Blower Pump8 vacuum pump brakes

Product Description

 

Working principle

Roots vacuum pump is a kind of rotary positive-displacement type of pump. The 2 three-lobe rotors keep a certain gap with the housing, and the 2 rotors mesh with each other and keep a certain gap when they rotate in the housing through a pair of synchronous reverse rotation high-precision gears. The diagram on the right shows the structure principle of the pump, from diagram I to IV, the rotor rotates in the house and completes 1 suction and discharge process.
The Roots vacuum pump with three-lobe rotors has technical advantages over the traditional two-lobe rotors in terms of pumping efficiency, maximum allowable differential pressure, temperature, vibration, noise and other major performances.

 

Main features

Compared with the traditional two-lobe Roots vacuum pump, there are below advantages:
1. Much higher efficiency, lower temperature, vibration and noise.
2. More stable and reliable, more convenient to use and maintain.
Other features:
1. Lower failure due to the rotors are fixed and no axial run-out.
2. High-precision transmission gear and precision rolling bearing are used, resulting in low noise and smooth operation.
3. The main shaft use special mechanical seal to ensure oil-free pump chamber.
7. Mechanical seal, oil seal, piston ring labyrinth seal and other types of seal can be used for end cover.
8. It is used in pump combinations together with rotary vane vacuum pump, reciprocating pump, liquid ring pump, dry screw pump and other types of backing pumps to meet various process requirements.

Applications

The advantage of Roots vacuum pump is that it has large pumping efficiency even at low inlet pressure, but ordinary Roots vacuum pump can’t be used alone, it must be used in pump combinations together with the backing pumps. The Roots vacuum pump can be started only after the pressure in the system is pumped to the allowable starting pressure of the Roots vacuum pump by the backing pump.
According to different working pressure and process conditions, the backing pump of Roots vacuum pump can be rotary vane vacuum pump, liquid ring vacuum pump, dry screw vacuum pump and so on. The performance of Roots vacuum pumps are different when combination with different backing pumps.
Roots vacuum pumps are mainly used in any vacuum system requiring large pumping speed and rough and medium vacuum (103-10-2Pa), such as: vacuum coating, vacuum welding furnace, vacuum heat treatment furnace, large space simulation test, microelectronics and integrated circuits, lamp and bulb manufacturing, laser manufacturing, vacuum packaging, centralized pumping system, various chemical processing, vacuum degassing vacuum deaeration, vacuum dehydration, vacuum CHINAMFG drying, vacuum distillation.

Product Parameters

Model Nominal pumping speed(50Hz) Ultimate pressure Maximum allowable pressure difference Nominal motor rating (50Hz)   Nominal motor speed  (50Hz)  Suction Connection size Discharge Connection size Weight Backing pump recommended
L/s Pa Pa Kw rpm mm mm Kg
ZJT-70 70 ≤0.5 ≥1.2*104 1.5 1450 100 80 165 DVP180 or DSP140
ZJT-150 150 ≤0.5 ≥1*104 3 2900 100 80 165 DVP360 or DSP280
ZJT-300 300 ≤0.5 ≥8*103 4 2900 160 100 275 DVP540 or DSP540
ZJT-600 600 ≤0.5 ≥6*103 5.5 2900 200 160 420 DVP540 or DSP540
ZJT-1200 1200 ≤0.05 ≥5*103 11 2900 250 200 980 ZJTQ-300+DVP540
ZJT-2500 2500 ≤0.05 ≥4*103 18.5 2900 320 250 1800 ZJTQ-600+DVP540
ZJT-5000 5000 ≤0.05 ≥3*103 37 1450 300 300 3580 ZJTQ-1200+DVP800

Note:
1. The pumping speed refers to the maximum pumping speed measured at the inlet pressure of the Roots vacuum pump in the range of 67 pa to 2.67 pa under the conditions of the recommended backing pump. (see p Pumping speed diagram)
2. The ultimate pressure is the lowest value of the stable air partial pressure measured at the pump inlet with a compression vacuum gauge after full pumping without any additional container and no air inlet under the condition of the recommended backing pump.
3. The data of the above table is obtained under the condition of using the recommended backing pump, users can choose different backing vacuum pumps according to different situations, but the main performance index will be changed.
 

Pressure diagram

 

 

Dimension

 

Model L L1 L2 L3 H H1 H2 H3 A A1 A2 D D1 D2 N-M d d1 d2 n-m
ZJT-70 730 191 330 360 270 252   40 256   214 Ф80 Ф125 Ф145 8-M8 Ф50 Ф90 Ф110 4-M8
ZJT-150 938 . 273 132 184 350 330 116.5 30 392 358 300 Ф100 Ф145 Ф165 8-M8 Ф80 Ф125 Ф145 8-M8
ZJT-300 1032 323 185 259 405 385 135 40 455 420 350 Ф150 Ф200 Ф225 8-M10 Ф100 Ф145 Ф165 8-M8
ZJT-600 1282 405 220 304 520 495 165 35 587 548 450 Ф200 Ф260 Ф285 12-M10 Ф150 Ф200 Ф225 8-M10
ZJT-1200 1573 473 296 392 650 625 218.5 58 722 678 560 Ф250 Ф310 Ф335 12-M10 Ф200 Ф260 Ф285 12-M10
ZJT-2500 1890 594 440 552 730 700 220 55 858 810 660 Ф320 Ф395 Ф425 12-M12 Ф250 Ф310 Ф335 12-M10

FAQ

Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.

Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements. 

Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Video Instruction
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum

roots vacuum pump

What Are the Differences Between Dry and Wet Roots Vacuum Pumps?

Dry and wet Roots vacuum pumps are two different types of pumps with distinct operating principles and characteristics. Here’s a detailed explanation of their differences:

1. Operating Principle:

– Dry Roots Vacuum Pump: A dry Roots vacuum pump operates without the use of any lubricating fluid or sealing liquid. It consists of two or more intermeshing lobed rotors that rotate in opposite directions, creating a series of expanding and contracting chambers. As the rotors rotate, gas is trapped in the chambers and carried from the inlet to the outlet, resulting in the generation of a vacuum.

– Wet Roots Vacuum Pump: A wet Roots vacuum pump, also known as a liquid ring pump, uses a liquid, typically water or another compatible liquid, as a sealing and working fluid. The liquid forms a rotating ring inside the pump, creating a seal between the lobes of the rotors. As the rotors turn, the liquid ring traps and carries the gas from the inlet to the outlet, creating a vacuum.

2. Lubrication and Sealing:

– Dry Roots Vacuum Pump: Dry Roots pumps do not require lubrication or sealing fluid. The absence of liquids eliminates the need for maintenance associated with fluid handling, such as oil changes or water management. Dry pumps are often preferred in applications where contamination from lubricants or sealing fluids is a concern, such as in semiconductor manufacturing or pharmaceutical industries.

– Wet Roots Vacuum Pump: Wet Roots pumps rely on a liquid seal for operation, requiring a continuous supply of sealing liquid, typically water. The liquid serves as both a sealant and a coolant for the pump. However, it also necessitates careful management of the liquid, including water supply, disposal, and potential contamination risks. Wet pumps are commonly used in applications where the presence of the sealing liquid is not a concern or can be easily managed.

3. Operation Efficiency:

– Dry Roots Vacuum Pump: Dry pumps are known for their high operational efficiency. They can achieve high pumping speeds and create substantial vacuum levels. Dry pumps are particularly suitable for processes that require quick pump-down times or applications where a deep vacuum is necessary.

– Wet Roots Vacuum Pump: Wet pumps typically have lower pumping speeds compared to dry pumps. While they can achieve moderate vacuum levels, they are not as effective in creating deep vacuums. Wet pumps are often used in processes where the pumping speed requirements are not as demanding, or in applications where the presence of the sealing liquid can provide benefits, such as in handling condensable gases or preventing contamination.

4. Application Suitability:

– Dry Roots Vacuum Pump: Dry pumps are commonly used in a wide range of applications, including semiconductor manufacturing, analytical instruments, vacuum packaging, and industrial processes. Their ability to handle different gases and their high operational efficiency make them suitable for various industries and processes.

– Wet Roots Vacuum Pump: Wet pumps find application in processes where the presence of a sealing liquid is advantageous. They are often used in applications involving the handling of water vapor, condensable gases, or corrosive gases. Wet pumps are utilized in industries such as chemical processing, pharmaceuticals, food processing, and environmental applications.

5. Maintenance and Care:

– Dry Roots Vacuum Pump: Dry pumps generally require less maintenance compared to wet pumps. They do not rely on sealing liquid, reducing the need for fluid changes, disposal, or monitoring of liquid levels. Dry pumps may require periodic maintenance, such as cleaning, inspection, and rotor lubrication, but the maintenance requirements are typically less frequent and less involved.

– Wet Roots Vacuum Pump: Wet pumps require regular maintenance due to the presence of the sealing liquid. Maintenance tasks include monitoring and replenishing the liquid, managing the water supply, and ensuring proper disposal of the used liquid. The sealing liquid may also require filtration or treatment to remove contaminants or prevent scaling or corrosion.

In summary, dry and wet Roots vacuum pumps differ in their operating principles, lubrication and sealing methods, operation efficiency, application suitability, and maintenance requirements. Dry pumps operate without lubrication or sealing fluid, offer high efficiency and are suitable for a wide range of applications. Wet pumps rely on a liquid seal, have lower pumping speeds, are used in applications where the liquid presence is advantageous, and require regular maintenance and care.

roots vacuum pump

Can Roots Vacuum Pumps Be Used for Vacuum Distillation?

Yes, Roots vacuum pumps can be used for vacuum distillation in certain applications. Here’s a detailed explanation:

Vacuum distillation is a process used to separate and purify components of a liquid mixture by exploiting the difference in boiling points under reduced pressure. By operating at lower pressures, the boiling points of the components are decreased, allowing for more selective evaporation and separation. Vacuum distillation is commonly employed in industries such as petrochemical, pharmaceutical, and chemical manufacturing.

Roots vacuum pumps can play a role in vacuum distillation processes by assisting in the creation and maintenance of the required vacuum conditions. Although Roots vacuum pumps alone may not achieve the high vacuum levels necessary for certain applications, they are often used in combination with other vacuum pumps, such as rotary vane pumps or oil-sealed pumps, to create a hybrid pumping system.

In a typical setup, Roots vacuum pumps are utilized as the primary roughing pump in the distillation system. Their high pumping speed allows for efficient removal of large volumes of gas, reducing the pressure in the system and enabling the effective operation of subsequent stages. The Roots pump works by trapping and compressing the gas, creating a pressure differential that facilitates the evacuation of the system.

While Roots vacuum pumps are effective in generating rough vacuum levels, they may not be capable of achieving the very high vacuum levels often required for precise separation in vacuum distillation. Therefore, they are commonly used in conjunction with other vacuum pumps, such as oil-sealed pumps or molecular pumps, that are better suited for achieving and maintaining high vacuum levels.

It’s important to note that the selection and configuration of the vacuum pumps for vacuum distillation depend on various factors, including the desired vacuum level, the characteristics of the liquid mixture being distilled, and the specific requirements of the distillation process. The vacuum system needs to be carefully designed to ensure optimal performance and efficient separation.

In summary, while Roots vacuum pumps alone may not be sufficient for achieving the high vacuum levels required for vacuum distillation, they are commonly employed as part of a hybrid pumping system in conjunction with other vacuum pumps. Their high pumping speed and capability to handle large gas volumes make them valuable for creating the initial vacuum conditions in the distillation process.

China Standard 1200L/S Zjt-1200 Petrochemical Pharmaceutical Medicine Gas Recovery Tri-Lobe Roots Vacuum Blower Pump8   vacuum pump brakesChina Standard 1200L/S Zjt-1200 Petrochemical Pharmaceutical Medicine Gas Recovery Tri-Lobe Roots Vacuum Blower Pump8   vacuum pump brakes
editor by CX 2024-03-26